# Quantifying CO<sub>2</sub> fluxes of boreal forests in Northern Eurasia

Integrated analyses of *in-situ* eddy flux tower, remote sensing and biogeochemical model

#### **Xiangming Xiao**

Institute for the Study of Earth, Oceans and Space University of New Hampshire, Durham, NH

April 12, 2006

NASA LCLUC Science Team Meeting

International collaborative project

**University of New Hampshire** Changsheng Li (PI), Xiangming Xiao Space Research Institute (IKI), Russian Academy of Science Sergey Bartalev Institute of Problems in Ecology and Evolution (IPEE), Russian Academy of Sciences Juliya Kurbatova

**Boreal forest and global carbon cycle** 

#### **Boreal forest distribution**

Siberia of Russia:600 million haEurope (including European Russia):300 million haNorth America:500 million ha

Carbon in boreal forest: ~50% of global carbon in vegetation and soils

There are large uncertainty in CO<sub>2</sub> fluxes of boreal forests

NEE = GPP

#### Eddy flux tower for CO<sub>2</sub>, water and energy - Fluxnet





#### Scientific questions to be addressed:

(1) What factors control the seasonal and interannual variations of NEE, GPP and R<sub>e</sub> at individual flux tower sites in northern Eurasia?

(2) What factors control the spatial variations of NEE, GPP and  $R_e$  across the flux tower sites in northern Eurasia?

(3) What are the impacts of disturbance and land use change on carbon fluxes in Siberia since 1998?

#### **Project Objectives**

 Developing a prototype tool by integrating CO<sub>2</sub> flux tower measurements, remote sensing analysis and biogeochemical models to interpret the observed CO<sub>2</sub> flux data across the tower sites in northern Eurasia;

(2) Quantifying temporal dynamics and spatial patterns of CO<sub>2</sub> fluxes from boreal forests in Russia over the period of 1998 – 2005.

#### **Research approach and methods**

|                                | ••                                 |        |                             |                     |                     |  |  |
|--------------------------------|------------------------------------|--------|-----------------------------|---------------------|---------------------|--|--|
|                                | leaf                               | canopy | ecosystem                   | landscape           | region              |  |  |
| field/lab<br>work              | chlorophyll<br>nitrogen            | LAI    | species,<br>soils           | land cover          |                     |  |  |
| eddy flux<br>tower             |                                    |        | NEE,<br>GPP, R <sub>e</sub> |                     |                     |  |  |
| radiative<br>transfer<br>model | chlorophyll<br>FPAR <sub>chl</sub> | LAI    |                             |                     |                     |  |  |
| Landsat                        |                                    |        |                             | land cover          |                     |  |  |
| MODIS                          |                                    |        |                             | FPAR <sub>chl</sub> | FPAR <sub>chl</sub> |  |  |
| VPM                            |                                    |        | GPP                         | GPP                 | GPP                 |  |  |
| DNDC                           |                                    |        | NEE, R <sub>e</sub>         | NEE, R <sub>e</sub> | NEE,R <sub>e</sub>  |  |  |

#### **Expected results**

- 1. Validation of satellite-based Vegetation Photosynthesis Model (VPM)
- 2. Validation of process-based DNDC model
- 3. Evaluating radiative transfer model (PROSAIL2)

4. A multi-scale satellite image database for the flux tower sites in northern Eurasia, and its analysis

 Regional datasets of GPP of boreal forests in Siberia for 1998-2005 from the VPM model
 Regional datasets of NEE of boreal forests for 1998-2005 from coupled VPM-DNDC models

#### Activities and results in Year 1

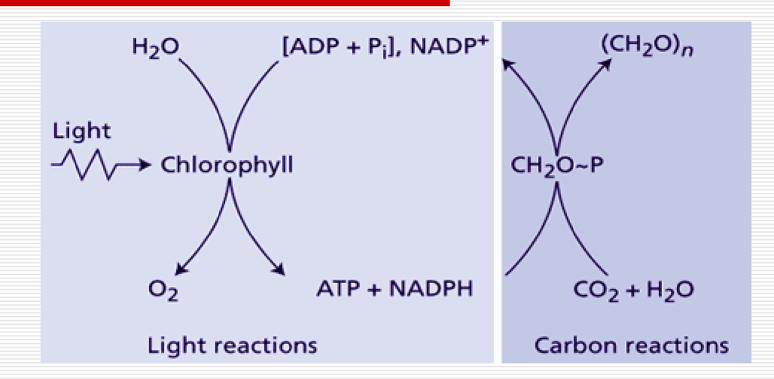
1. Project meeting in Moscow, June 2005

Continuous operation of eddy flux towers in CFBR sites
 Field sampling and survey in CFBR sites
 Evaluating improved radiative transfer model
 Evaluating VPM model
 Evaluating DNDC model

7. Analysis of Landsat images
 8. Analysis of MODIS and VEGETATION images



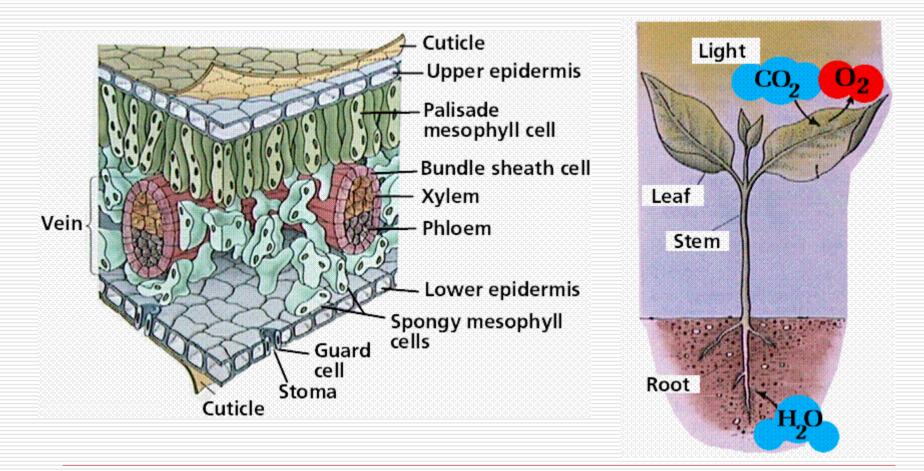
Eddy flux tower at CFBR NEE of CO<sub>2</sub> Water flux Energy flux






## Leaf sampling at CFBR sites chlorophyll nitrogen leaf water content leaf specific weight




### Plant Photosynthesis or GPP



Leaf chlorophyll content and light absorption by chlorophyll are the fundamental controlling factors of GPP

## Scaling-up of light absorption from chlorophyll to leaf and canopy

#### non-photosynthetic vegetation (NPV)



http://www.emc.maricopa.edu/faculty/farabee/BIOBK/BioBookPLANTANAT.html

```
Partition light absorption at chlorophyll, leaf
   and canopy levels
Leaf level
     canopy = green leaf + NPV (stem, branch)
     FPAR<sub>canopy</sub> = FPAR<sub>leaf</sub> + FPAR<sub>NPV</sub>
Chlorophyll level
     Leaf/canopy = Chlorophyll + NPV (veins, cell wall)
     FPAR<sub>canopy</sub> = FPAR<sub>chl</sub> + FPAR<sub>NPV</sub>
```

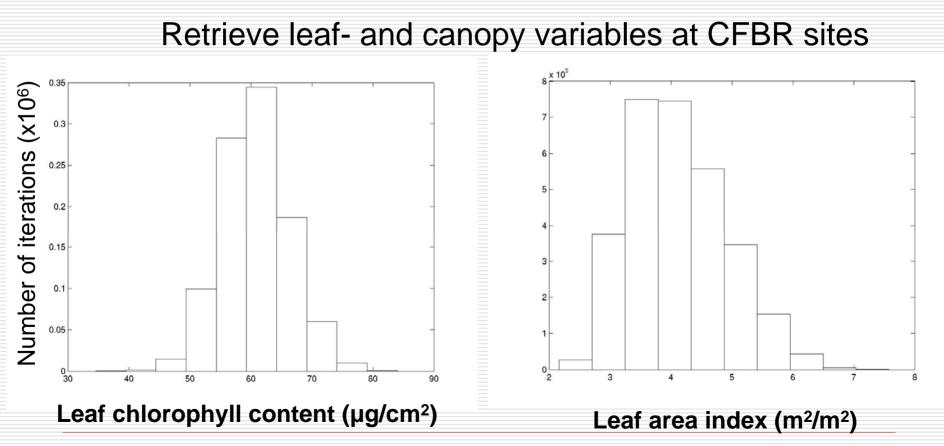
#### NPV = non-photosynthetic vegetation

#### **Radiative transfer model (PROSAIL2)**

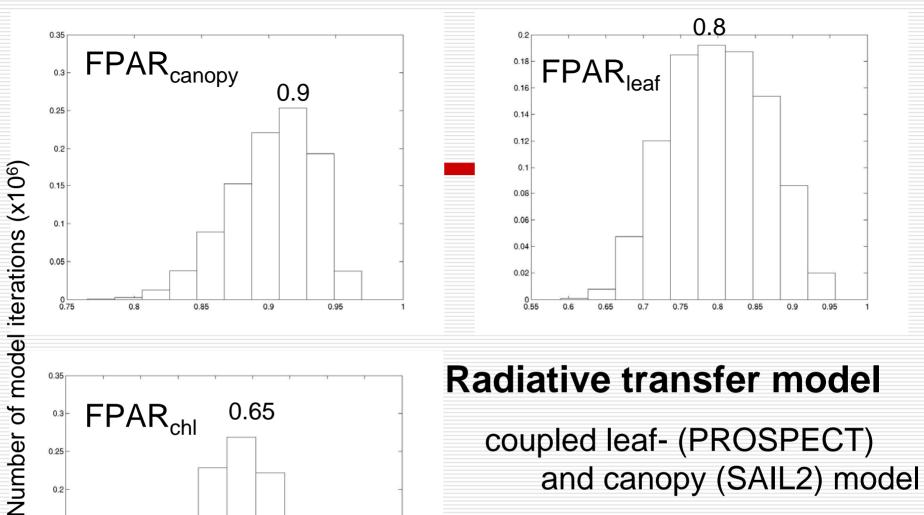
Coupled leaf- (PROSPECT) and canopy-level (SAIL2) model

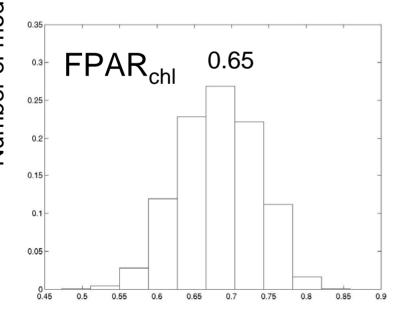
Retrieve both leaf- and canopy-level variables, and Calculate FPAR<sub>canopy</sub>, FPAR<sub>leaf</sub> and FPAR<sub>chl</sub>

Zhang et al., 2005, RSE; Zhang et al., 2006a,b


# A comparison between the PROSAIL2 model [*Zhang, et al.*, 2005] and the radiative transfer model used for MODIS standard LAI/FPAR products (MOD15) [*Myneni, et al.*, 2002]

|                  | Name               | Description                        | Unit                               | PROSAIL2                                                                       | MOD15                         |
|------------------|--------------------|------------------------------------|------------------------------------|--------------------------------------------------------------------------------|-------------------------------|
| MODIS<br>bands   |                    |                                    |                                    | Green, Red, NIR <sub>1</sub> , NIR <sub>2</sub> ,<br>SWIR <sub>1</sub>         | Red, NIR <sub>1</sub>         |
| MODIS            |                    | Spatial resolution                 |                                    | 500-m                                                                          | 1-km                          |
| Inversion        |                    | Inversion algorithm                |                                    | мсмс                                                                           | Look-up table                 |
| Structure        |                    |                                    |                                    | 1-D                                                                            | 3-D                           |
| Leaf-level       | C <sub>ab</sub>    | Leaf chlorophyll (a+b)             | μg/cm <sup>2</sup>                 | Retrieved,                                                                     | Fixed                         |
|                  | C <sub>brown</sub> | Other pigments in leaf             |                                    | Retrieved,                                                                     | Not included                  |
|                  | C <sub>m</sub>     | Leaf dry matter                    | g/cm <sup>2</sup>                  | Retrieved,                                                                     | Fixed                         |
|                  | C <sub>w</sub>     | Leaf equivalent water<br>thickness | cm/cm <sup>2</sup>                 | Retrieved,                                                                     | Fixed                         |
|                  | N                  | Leaf internal structure            |                                    | Retrieved,                                                                     | Fixed                         |
| Canopy-<br>level | LAI                | Leaf area index                    | <b>m<sup>2</sup>/m<sup>2</sup></b> | Retrieved,                                                                     | Retrieved                     |
|                  | SAI                | Stem area index                    | %                                  | Retrieved,                                                                     | Not included                  |
|                  | CF                 | Cover fraction                     | %                                  | Retrieved,                                                                     | Retrieved                     |
| FPAR             |                    | Fraction of PAR<br>absorption      |                                    | FPAR <sub>canopy</sub> , FPAR <sub>leaf</sub> ,<br>FPAR <sub>chlorophyll</sub> | <b>FPAR</b> <sub>canopy</sub> |


#### **Radiative transfer model**


coupled leaf- (PROSPECT) and canopy (SAIL2) model

daily MODIS data (500-m spatial resolution)



Daily MODIS data from June 1 -16, 2004 were used for inversion of PROSAIL2





#### **Radiative transfer model**

coupled leaf- (PROSPECT) and canopy (SAIL2) model

daily MODIS data (500-m spatial resolution)

Retrieve leaf- and canopy variables at CFBR sites

Daily MODIS data from June 1 - 16, 2004

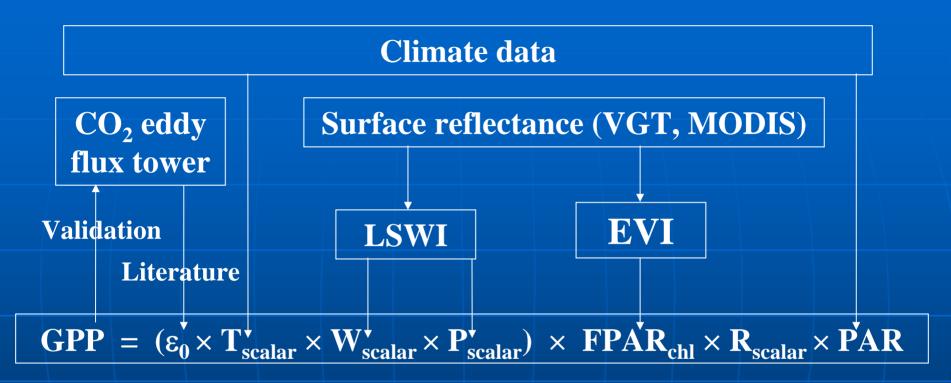
#### **Uncertainty in estimating GPP**

#### model variable/process and parameters

absorption of PAR

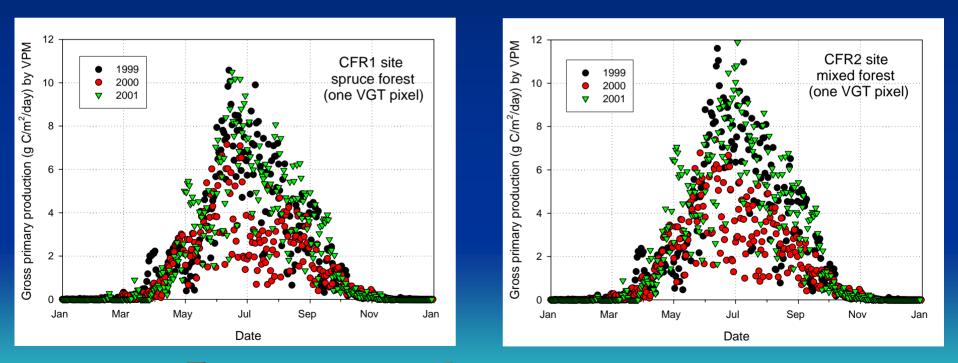
#### **Structural perspective**

PAR absorbed by canopy (PSN, GLO-PEM)

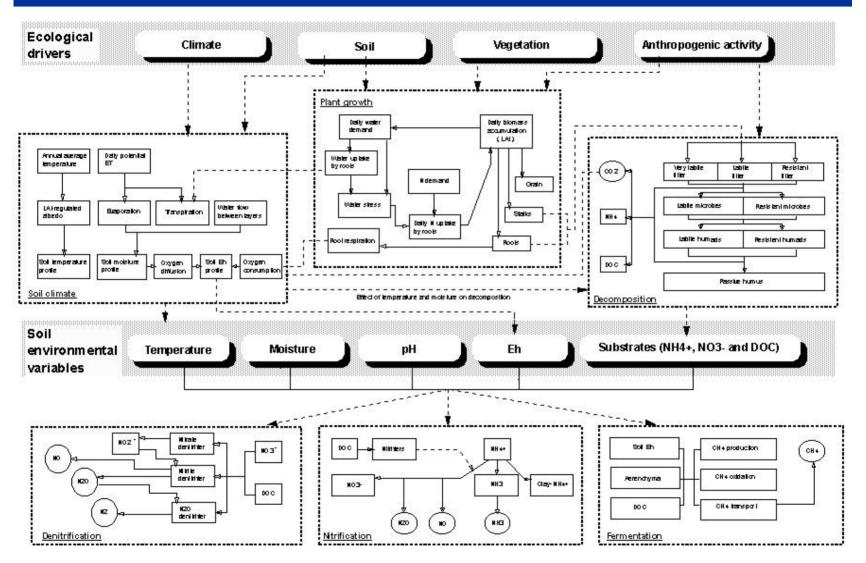

 $\mathsf{GPP} = \boldsymbol{\epsilon}_{\mathsf{g}} \times \mathbf{FPAR}_{\mathsf{canopy}} \times \mathbf{PAR}$ 

#### **Biochemical perspective**

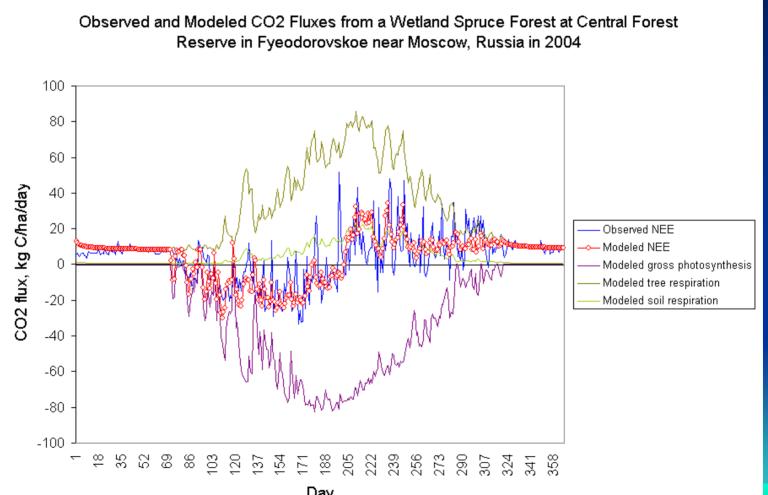
PAR absorbed by chlorophyll (VPM)


 $GPP = \varepsilon_g \times FPAR_{chl} \times PAR$ 

#### Satellite-based Vegetation Photosynthesis Model (VPM)




 $T_{scalar}$ ,  $W_{scalar}$ ,  $P_{scalar}$ ,  $R_{scalar}$  – downward regulation scalars for air temperature, leaf water content, leaf phenology and non-linear light response


VPM is evaluated at ~40 eddy flux tower sites of AmeriFlux, EuroFlux, and ChinaFlux Gross primary production predicted by VPM model wet spruce forest and mixed forest sites



#### **Structure of Forest-DNDC**

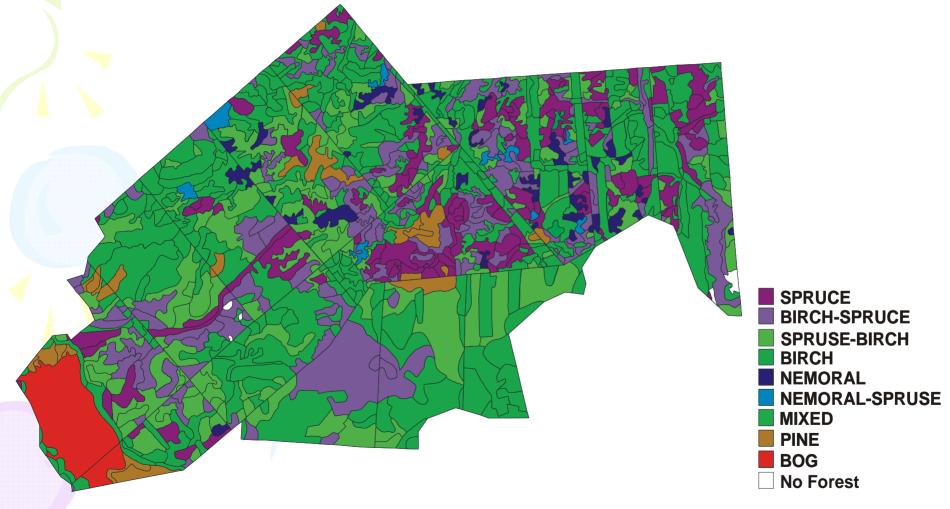


#### DNDC-predicted photosynthesis, tree respiration and soil respiration for a wetland spruce forest at CFBR in 2004



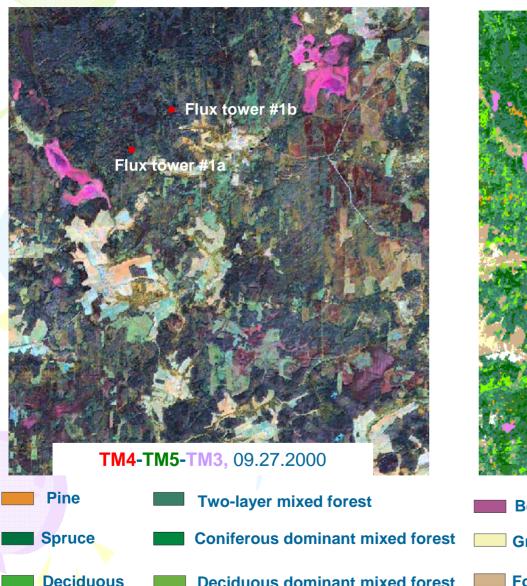
Day




Landscape-scale study field surveys in CFBR land cover types tree species soils






#### Landscape-scale analysis

#### Collection of ground truth data for the test sites



## GIS database for Central Forest Natural Biosphere reserve, test site in Tver region

#### Land cover map of CFBR site (right) derived from Landsat-ETM+ image (left)







#### **Regional-scale study**

Develop <a href="http://remotesensing.unh.edu">http://remotesensing.unh.edu</a> website

Image data MODIS data from 2000 – present VGT data from 1998 – present

Vegetation indices

LSWI, EVI, NDVI, ...

Phenology

#### **Regional-scale study**

Geospatial databases for VPM-DNDC simulations

Climate

NCEP/NCAR global climate reanalysis

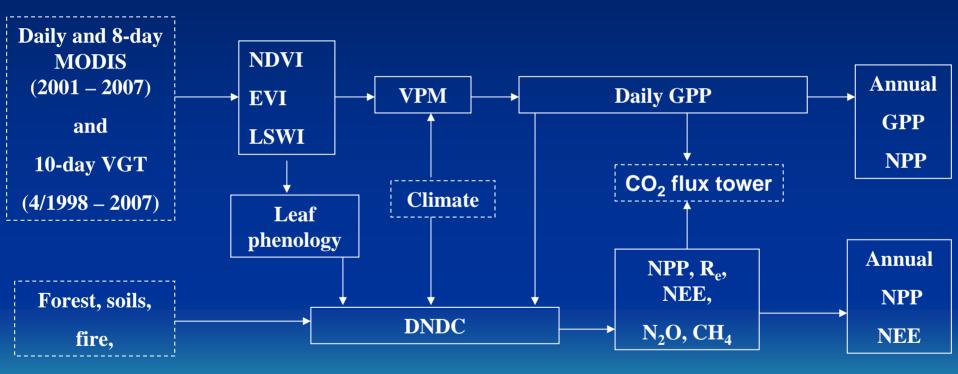
Soil

Land Resources of Russia (IIASA)

Vegetation

Land Resources of Russia (IIASA)

#### Plan for Year 2


- **1. Continue the field work in CFBR**
- 2. Evaluate VPM/DNDC/PROSAIL2 models for flux tower sites in central Siberia
- 3. Couple VPM/DNDC models
- 4. Conduct landscape-scale analysis
- 5. Initiate regional analysis







## A data-model assimilation system coupled VPM – DNDC models



Flowchart of a data-model assimilation system for quantifying carbon fluxes and trace gases emissions.