Carbon, Climate and Managed Land in Ukraine

Integrating Land Use Data and Models for NEESPI

Francesco N. Tubiello, Cynthia Rosenzweig

Climate Impacts Group, NASA-GISS and Columbia University

Gunther Fischer, Anatoly Shvidenko

International Institute for Applied Systems Analysis

Mykola Zalogin, Katerina Gumenyuk

Ministry of the Environment and Academy of Sciences, Ukraine

NASA LCLUC Science Team Meeting University of Maryland, Apr 11-13 2006

Introduction:

Research Activity: Land use for agriculture, climate variability and change in Ukraine.

Research Timelines: current, 1990-present; future, to 2030, 2050, 2080.

Technical Goal: Model agricultural systems focusing on crop and management factors relevant to carbon cycling.

Tools: 1) Dynamic Crop models; 2) agro-ecological zoning; 3) experimental, statistical and remote sensing data sets.

Introduction:

Contributor to NEESPI: Non boreal, managed ecosystems. Interactions of human activity and socio-economic change on land processes.

Funding Period: Mar. 2005-Feb. 2008.

This presentation reports on the first year of activities, focusing on developing modeling tools for agriculture in Ukraine.

Motivation: (general)

Agriculture is a fundamental human activity that plays a dual role in global change:

- It has been, is and will continue to be <u>a key</u>
 <u>driver of global change</u> → climate change;
- In coming decades, it is likely to be greatly affected by climate change.

Motivation: (specific)

- Agriculture is important in Ukraine:
 - ~30 Mha /60 Mha cultivated;
 - > 20% GDP is from agriculture;
- Important socio-economic changes ~ last 15 yrs:

Collapse of N inputs and productivity;

Break-down of large cooperative structure;

• Participant in Kyoto Protocol:

__Joint Implementation Projects (LULUCF);

National Communications

Agriculture and Carbon Cycling CO_2 , (N_2O, CH_4) **Emissions Food Production Energy, N Inputs** 0000 **C** exports **Soil Carbon**

Modeling Tools, From Site to Region:

Modeling Tools, From Site to Region: Dynamic Crop Models

Dynamic Crop Models: 25 Sites

Annual Precipitation (mm)

At each site:

- -- Soil and climate data;
- Crop management data;
 Winter Wheat, Maize, Potato, Sunflower
 (planting dates, N and water, cultivar types, etc.)
- -- Site or rayon-level statistics

Dynamic Crop Models: Evaluation, Winter Wheat

Production Estimates and Crop Assessment Division, FAS, USDA

Dynamic Crop Models: Evaluation, Winter Wheat Effects of 70% Reduction in N Fertilizer after 1990 From 100 to 30 kg N/ha

Modeling Tools, From Site to Region:

From site to Region: Steps in AEZ Methodology

Crop types in the study: Ukraine

- The selection of crops for the present Ukrainian AEZ study is based on the considerations listed below:
- a) the most significant crops in terms of sown (harvested) areas;
- b) importance of the crops for food security;
- c) economic effect (profitability) of the production of the crops;
- d) the world's and domestic trends of the economic development;
- e) National Programme of the Development of the Ukrainian Agricultural Sector

Crops types for AEZ study			
Cereals		Industrial crops	
Winter wheat	2	Sugar beet	4
Spring wheat	3	Sunflower	4
Rice	2	Soya	3
Winter rye	2	Flax	4
Millet	4	Vegetables	
Winter barley	2	Cabbage	4
Spring barley	2	Tomato	4
Oats	3	Onion	4
Maize for grain	4	Potato	4
Buckwheat	2	Fodder crops	
Pea	3	Maize for silage	4
Bean	3	Alfalfa	1
Total	79	Grass	3

Application: Climate Change Impacts

Length of Growing Period for current and projected climate of the 2080s

Application: Climate Change Impacts

Application: Climate Change Impacts

Summary:

- -- Crop Models: interannual dynamics
- -- AEZ: Spatial Scaling;
- -- Next: Transfer dynamic functionality from site to regions, including carbon;
- -- Use Remote sensing for validation (landsat, NDVI, derived vegetation products)

Distribution of agricultural land by farm type in 2002

Conclusions:

Good Applicability of site crop models to Ukraine case studies

☐ Simulations can capture interannual variability and fertilizer-N shock signal after 1990 for productivity, maybe for soil C;

Agro-ecological zone model implemented for Ukraine: current, and future climates (2030, 2050, 2080).

Poor additional data for sites, although collection ongoing;

Remote sensing utilization main focus of next two years

THANK YOU!