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Where are aerosols in the Arctic? oo
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Local sources of anthropogenic aerosols in | eee°

the Arctic | o°

» The only significant industrial
urban centers within the Arctic are
located in Russia.

* Increasing NO, concentrations
in several Northern Russia cities
reflects the increasing

number of private vehicles all
across Russia.
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Local natural and anthropogenic sources | e
of aerosols in the Arctic

e Natural:
o sulfates (gas-to-particle conversion of DMS emitted from sea-water)
» sea-salt (emitted from sea-water)
* organics (emission from vegetation)
» some crustal particulates (from snow-free land surfaces)
 carbonaceous (OC and BC (soot) from wild fires)
* volcanic aerosols

 Anthropogenic sulfates, nitrates and carbonaceous:
* industrial cities (e.g., metal smelters in Norilsk, Nikel)
* local use of fossil fuels
» oil production industries

 shipping

Local sources are projected to increase in the future
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Sources of Pollutants Within the Arctic
Oil and Gas Exploration and Production
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least 25% of the world’s undiscovered
petroleum resources.

The use of oil and gas resources in the
Arctic is expected to increase as the
ice-free season increases and ice

9 cover decreases.
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Change in the NOx distribution in the Arctic resulting from
ships calculated by the MOZART model (July 2050 - July 2000)
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Granier et al. (2007):

* Increases in NO, from 2000 to 2050: up to 10 ppbv
* Increases in O, from 2000 to 2050: up to 30 ppbv

* Increases in Black Carbon from 2000 to 2050: up to 0.1 ppbv (50 ng m-3)
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Long-range transport of aerosols to the Arctic; oo
“Arctic Haze” o
Mean position of the Arctic Front in
winter and summer * Winter/spring accumulation
Wind frequencies of pollution originated at lower
SR latitudes (but to the north of the

Arctic Front)

 First reports by pilots in the
50s, measurements from the 70s

* Northern Eurasia and Northern
:.\",-:,’;’;’,{j","‘;‘;"“' : West Europe are major
v source regions to the BL in the
Arctic due to:
» extension of Arctic
front to near 40°N large
 pollution sources

Wind frequencies

Winter: 40%
Summer; 10% o7

Understanding of aérosol impacts on the Arctic system requires
a knowledge of sources dynamics (LCLUC) in Northern Eurasia,
changes in general circulation and climate variability and change.
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Locations of Long-term Arctic Aerosol Monitoring Stations
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Locations of actinometric stations in the 9992
Russian Arctic 13
Operated from the 50-60s until 1993
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Observed long-term aerosols trends in
the Northern American Arctic

Long -term trends in nitrates and sulfates at
Alert, Canada (monthly means for Aprils)

NO;, pgNm® SO, ngSm’
0.04- - 1.0
Alert
o - 08
- 0.6
0.02-
- 04
0.01- Ev
1980 1985 1990 1995 2005
Sources: Diesel and gasoline engines

Fertilizer

Coal fired power plants

Quinn et al., Tellus, 2006.

-1

Scattering, Mm

2.0

Absorption, Mm™
P
|

BC, ng m?

Barrow scattering

1975 1980 1985 1990 1995 2000 2005



000
n - 0000
Observed long-term aerosols trends in Finland eeso
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Decrease due to break up of the Soviet Union ~ D€Creéase due to introduction o ®
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Time series of SO, emissions from the non-metal ferrous
Smelter at Nikel

Yellow bars = Norwegian monitoring station - Svanvik
Brown dots = Nikel emissions.
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Trends in aerosol optical depth in the Arctic

Russian Arctic (March)
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Trends in aerosol optical depth in the Arctic

Russian Arctic (March) El Chichon
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Winter (Dec — Mar) Index of the North Atlantic Oscillation (NAO2 922
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Positive values lead to stronger than average westerlies over the middle latitudes



Transport of Asian dust to Alaska oo

Frequency and intensity
of dust outbreaks to the
Arctic remain unknown

12 April 2002

DOE/ARM
North Slope,
Alaska
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Transport of Asian dust from CALIPSO

CALIPSO

Choi, Sokolik, and Winker(2007)

CloudSat

Vertical distribution is
a key factor in
controlling radiative
impacts of aerosols,
aerosol-cloud-

| precipitation interactions
and aerosol
removal/deposition that
affects aerosol transport
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Transport of soot to the Arctic 11T

B i i S ioma . Russia% (11%6)

Where are the sources of BC? | ©
Koch and Hansen (2005):

Industrial and biofuel combustion in
Southern Asia are a major source of
BC in the Arctic

Stohl et al. (2006, 2007):

Western Europe and Northern
Eurasia are the main sources of BC
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“Non-accounted” summer transport of smoke EEEE'
to the Arctic o0

Importance of pyro-convective
smoke clouds

Lidar Backacatter Ratio
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Aerosol effect on surface albedo

Deposition of BC onto snow (ice)
surfaces:

* ice-albedo feedback
amplification

« anthropogenic soot may have
caused one quarter of last
century’s observed warming
(Hansen et al.)

 significant reductions in
Northern hemisphere albedo and
sea-ice extent (Jacobson, 2004)
 contribute to melting

Estimates are extremely

Snowilce
Cover

sensitive to accurate treatment of snowpack

aging and soot optical properties as well as

modeled predicted soot deposition
(Zender et al.)
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Effects of surface albedo on radiative §§:°
forcing of aerosols °

Changes in vegetation cover, land snow cover and sea-ice extent in the
Arctic can modulate the radiative forcing caused by aerosols and clouds

TOAAaF --W m-2

10 ‘
5 A Cooling
’ | ~ -w —— | Aerosol w
| | b . 1
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10+ ~ Dark vegetation 7 | ~- a =, e
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mixed vegetation-snow surfaces



Aerosol - clouds interactions |:

Water vapor, clouds precipitation and dynamical feedback

' Y

Blocks sunlight,
cools surface —
Warms atmosphere
by absorbing specig

1]

[
=

Increased stability

Yo oo» less convection |
alters
heating

- - gradients,
\ convection
Indirect effect . > and
Qind / Brightens circulation
clouds
(dir;ct Eﬁh »
—-Qkind Suppresses or
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Aerosol chemistry, transport, deposition and aerosol-mixing/ interactions



“Classical view”: 0000
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Second indirect effect -> precipitation (warm and cold clouds) ::0
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Cloud albedo glacfatfon
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Enhanced aerosol amounts can make clouds emit more thermal
energy to the surface

(Lubin and Vogelmann, 2006, Nature)

Low Aerosol High Aerosol

Smaller sizes of drops in polluted clouds




0000

o000
Enhanced aerosol amounts can make clouds emit more thermal energy to the surface L X X
(Lubin and Vogelmann, 2006, Nature) :0

275

07 Jun 01 15:41
21 May 03 13:.07

2655‘ Im wm:m"m | j . ;‘ |".-.'_,:'II |

260 -_ " I’Ihﬁhl 3 il ||.| ., I||I I|J

I bl

1 1 1 1

I

Brightness temperature (K)

- T(sfc) = 272.0 K CN =28 cm= F(PIR) = 289.9 W m-2
255 - Tisfc) = 271.4 K CN = 184 cm= F(PIR) = 297.6 W m-2
i | | | | |

1 L 1 1 L I L

600 700 800 900 1,000 1,100 1,200 1,300
Wavenumber (cm-1)

Downwelling emission spectra measured by the NSA AERI beneath two
clouds with very different condensation nuclei (CN) concentrations.



Trends in downwelling surface LW radiation
Francis and Hunter (2007)
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Dehydration-Greenhouse Feedback (DGF) | ee

Blanchet et al.

*Sulphuric acid coating is observed on aerosol - laboratory observations this
indicate coated aerosols inhibit ice nuclei activity by orders of magnitude

Pristine aerosol

Synoptically forced
/\/ cooling

%% S

Radius (microns)

Concentration

Radius (microns)

 Numerous small ice crystals * Fewer but larger ice crystals

* Long cloud lifetime  Precipitate and dehydrate

» Greenhouse warming * Reduced Greenhouse & cooling
» Radar: no or weak return e Radar: visible

o Lidar: observed backscatter e Lidar: Visible

e Thin Ice Cloud type 1 e Thin Ice Cloud type 2



Blanchet et al. et

Dehydration-Greenhouse Feedback (DGF)

Clouds forming on acidic ice nuclei precipitate more effectively,
dehydrate the air, reduce greenhouse effect and cool the surface

Ice Clouds type 2 Ice Clouds type 1

Slow Cooling Process

*
Low Acid Aerosols
Hydrophilic

Less H,O vapour

Colder

Cold Ice and Snow Surface




Aerosol surface forcings and
surface temperature response

Tropospheric ’—‘
Aerosols Direct
Effect
T heri 13
ropospheric
Aerosols ~ [
Indirect Effect 1
Cloud Longwave
Emissivity
Black carbon
aerosol | Snow
albedo
|
Tropospheric
Ozone
W Winter
m Spring
GHGS Mot O Summer
i
eHnane = Fall
-5 -3 -1 1 3 5 -2 -1 0 1 2
Surface Forcing (W/mz2) Surface Temperature Response (C)

Seasonally mean forcing and responses simulated with NASA GISS ModelE

GCM Quinn et al.(2008)
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Comparison of Seasonality & Magnitude of Forcing and ::‘
Surface Temperature Response for Short-lived Pollutants in the Arctic| e
Quinn et al.(2008)
Forcing Agent Season Fg Froa Froa-s ATs?
W m™ W m™ W m™ °C
Tropo ' sols - Direct Effect’
Total” — Fossil+Bio Fuel Winter I -0.04 | 0.08 0.11 1] |
SO, +0C + BC Spring ozl 0.92 1.6 -0.93°
Summer -0.93 N 0.11 1.0 -0.47
Fall -0.14 N\, 0.08 023 / -1.1°
Tropospheric Aerosols - IndireCNgffects /
Total” - Fossil+Bio Fuel Winter -0.04, 0.24, 0.2° 0_&_003(3 0.11,-0.34, -¢23 -0.77'
Cloud albedo + cloud cover Spring -3.0,1.9,-1.1 0,0.1, O° 3.0,-1.8/4.2 -0.68"
SW, LW, SW+LW Summer -12.2,-0.5, -13 6.6, -0.5%R 19, o/é -0.45'
SO, +0C +BC Fall -0.4,-0.1, 0.5 0.49,-0.9, -0.41 0.89, -0/8, 0.09 -0.89
Cloud longwave emissivity Winter +3.3t05.2¢ i ‘ 1t01.6
Black carbon - Snow Albedo
BC — Fossil+Bio Fuel Winter 0.02 Season?al 0.37
Spring 053 Offset in 051
Summer 0.21 Forcing and 0.21
Fall 0.002 ] 040
Tropospheric Ozone — GHG warminfj + SW absprption' Respopse
O3 — Fossil+Bio Fuel and Winter 0.13 \ 0.43
Biomass burning Spring 0.34 /) \ 0.31
Summer 0.14 / \ 0.11
Fall 0.24 l \ 0.26
Methane — GHG warrfing’
Methane Winter | 029 0.34
Spring | 045 0.27
Summer Q.55 T
Fall 0.34 0.35




Summary o

Arctic aerosols may be contributing to the accelerated rates of warming observed|in the
Arctic. However, there are large uncertainties in assessments because of the inability of
models to describe accurately many of the complex processes and feedbacks involved,
as well as a paucity of observational data.

A key gquestion remains as to the role that aerosol, clouds and associated feedbacks play
in modulating GHG warming in the Arctic

By affecting radiation, clouds and surface albedo, aerosols are linked to the radiation-
climate feedback processes such as snow/ice-albedo feedbacks, water vapor feedback
and cloud-radiation feedbacks that all have been known for some time to be of
importance for the Arctic climate.

Complex spatial trends of aerosol across the Arctic imply the heterogeneous related
forcing and complex responses

A combination of changes in sources (especially, LCLUC in Northern Eurasia), transport
(atmospheric circulation) and precipitation (aerosol removal) is emerging as a key factor
that controls the presence of aerosols in the Arctic and hence aerosol-induced impacts
upon the Arctic system
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Global “dimming” paradigm:

aerosol-induced reduction in downward surface solar radiation

Trend (%/10YR) Data of global (direct+diffuse) solar radiation from
160 FSU actinometric stations, 1960 — 1990;

Abakumova et al. (1996)

1111 Net effect of {Aerosols +clouds +H20} + surface albedo



The Spectrum of our Knowledge LSO0C
o0o
From Ground-based Sensors (Shupe et al) :o
<+—Certain “Known” UnknoYvn
Phase Phase balance |
Classification (layer) profile
Ice Re hase balance
IWC/IWP (resolved)
Cloud L\WP LWC
Boundaries LWC :
o . . 0 assumption
Liquid Re  (adiabatic) o
(thin clouds) Liquid Re
Radiat lce (Thick clouds)
ative Liquid  optical depth Heati .
Forcing - 9 Liquid
optical depth Rat extinction
Liquid ice
Vertical A extinction Turbule
Velocity ~ xtinction dissipation r
(thin)

\—

Y Need new methods

Need further validation



Direct radiative impacts of aerosols ooo

specifics of the Arctic region

IMPACT

IMPORTANCE

Top of the atmosphere (TOA) radiative

forcing
(SW plus LW)

affects energy balance of the
Earth’s climate system

Radiative forcing at the surface
(SW plus LW)

affects surface temperature and
surface-atmosphere exchange
processes, ecosystem functioning

Radiative heating/cooling

affects temperature profile, cloud

(SW plus LW) lifetime, and atmospheric dynamics
thermodynamics
Actinic flux affects photolysis rates and
(UV) photochemistry (e.g., O3)

Changes in surface albedo (via
deposition of soot and dust on
surfaces) (SW)

affects surface energy budget,
land surfaces and oceans




Linking aerosol and precipitation through direct and indirect effects i
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and contrails

Surface
Scattering &  Unperturbed Increased CDNC Drizzle Increased cloud height Increased cloud Heating causes
absorption of cloud (constant LWC) suppression. (Pincus & Baker, 1994) lifetime cloud burn-off
radiation (Twomey, 1974) Increased LWC (Albrecht, 1989) (Ackerman et al., 2000)
\ Direct effects } Cloud albedo effect/ @ud lifetime effect/ 2" indirect effect/ Albrecht effey KSemi—direct effect)
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Comparison of measured and simulated surface net shortwave irradiance as a function
of visible (500 nm) aerosol optical depth during an Asian dust event at Barrow
Observatory, April 2002. Symbols represent one-minute measurements and solid lines
the results from MODTRAN™ fitted using linear regression for zenith angles indicated
at the upper right. The circled (suspect) points were not used in the 62° analysis for
purposes of computing DARF empirically (Stone et al.)

100.0
: R ¢ 62
80.0 Teobr s 75°
T SRy
E I\‘ ;'Il. ‘ B1u
M
z 60.0
z
& 40.0 —‘\\
Ll
z F Y
20.0 m\w
0.0 ' T ' T ' T
{ 0.2 0.4 0.6 0.8

AOD (500 nm)




Heating/cooling — Asian dust

at Barrow

Altitude (km)
[ ]

Simulations for 6,=75°

Full Spectral — AOD =0.28
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First Views of CALIPSO data 22

Browse Image with average every 15 profiles of Tatol_Attenuoted_Backscatter_ 532
Data Range: 4G801: 516800: 1; 1: 583: 1
' ' ' L 1 L L '
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CALIPSO captures both the maximum altitude of the smoke plume at about 6
km and the vertical smoke structure, as it evolves over time.



e T AVHRR Arctic summer 20 yr
temperature ‘trends (C/year)

Hints at Aerosol-precipitation
effects on the climate change of
the Arctic
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Specifics of aerosol- radiation interactions in | eece

the Arctic o

» The deficit of Arctic energy is central to the Globe
* The radiative balance in the Arctic very sensitive to changes of atmospheric
composition

« Prolong Polar night — importance of LW (aerosols and clouds work like GHGS)
» Because of bright surfaces, even relatively small amounts of absorbing species
(such as soot and dust) cause warming

« Changes in

 Important to know: Arctic —wide distribution of aerosol types (composition as a
function of size) and their abundance
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