The Global Water System Project (GWSP): Focus on Drylands

Alexander I. Shiklomanov, Charles J. Vörösmarty Co-Chair of GWSP SSC www.gwsp.org

A Collaboration of the Global Environmental Change Programmes

A joint project w/ financial support from:

The NEESPI / LCLUC Drylands Meeting Urumqi, China, Sept 16-20th 2007

CENTRAL TENET OF THE GWSP

Humans are changing the global water system in a globallysignificant way, but without....adequate knowledge of the system and thus its response to change

GWSP is Science-Driven but Policy-Informing and organized around 3 science themes:

- 1. Quantify change and its sources
- 2. Uncover feedbacks in the global water system
- 3. Assess system adaptation and resilience

The Global Water System

Working definition The global suite of water-related human, physical, biological and biogeochemical components, and their interactions

PHYSICAL COMPONENTS

e.g. moisture transport, precipitation, river discharge, water storage

WATER

CYCLING

BIOLOGICAL & BIOGEOCHEMICAL COMPONENTS

e.g. species richness, habitat quality, water quality HUMAN COMPONENTS

e.g. via water related institutions, water engineering, water use in several sectors

GWSP Implementation Strategy

- Programme definition and initiation (2 years)
 - Finalize research plan
 - First SSC meeting February '05
 - Results: 1. First fast-track activities (n=10)
 - 2. Regional offices established

3. Initial sponsorship

- Production phase (3 years)
 - Three new prioritized activities: plan to be launched in the fall of 2007
 - Broaden community participation
 - Stakeholder involvement
- Data synthesis and application of results (5 years)
 - Data synthesis, application and distribution of results

Scientific Framework

GWSP THEMES & CROSS-CUTTING ACTIVITIES

Theme 1 - Magnitudes and Mechanisms of Change

A-1.1 Water Governance and the Global Water System

A-1.2 Land Cover Changes and the Global Water System

A-1.3 Climate Change and the Global Water System

A-1.4 Water Diversions and the Global Water System

A-1.5 Nutrient and Sediment Transport and the Global Water System

Theme 3 - Resilience and Adaptation

A-3.1 Water Requirements for Nature and Humans

A-3.2 The Nature of Adaptive Capacity of the Global Water System

A-3.3 Approaches to Enhancing Adaptive Capacity (the role of institutions, governance, industrial transformation)

A-3.4 The Provision of Ecosystem Goods and Services by the Global Water System

Theme 2 -Linkages and Feedbacks

A-2.1 Linkages at Different Spatial Scales in the Global Water System

A-2.2 Legacy of Human and Natural Interactions in the Global Water System

GWSP National/Regional Groups

•Japan, China, U.S., India (under discussion)

- •GWSP-Asia w/ Southeast Asia (under discussion)
- European (neWater, Framework study teams)

Global-RIMS (Atlas, Indicators)

includes regional, continental and global datasets at resolutions from 6' to 30' **Functuanallity of system:** Data mounting; Data preprocessing; Data navigation and display

LAME Varr

A Global Rapid Integrated Monitoring System (Global-RIMS)

Instructions to navigate

Population Density 2000

Metadata Link

Basin Name	Amu-Darya
Pass mouse over m	ар
Longitude	
Latitude	
Basin	
Country	
ulation Density 2000, per km² 🗌	Check Box to Load

Show cities on the map

Upstream search distance at click point -O O O 1 O 2 grid cells

Deselect Basin

Calculations with DSS Data for this area

Data calculation and manipulation system

Calculations with RBIS-UNEP Data for Selected Area

Parameter	Unit	Symbol	Parameter	Unit	Symbol	Parameter	Unit	Symbol		
Elevation	m	D1	Irrigated Area	km²	D13	Population Density 1990	per km²	D25		
Precipitation 6'	mm/yr/grid	D2	N Load	T/grid/yr	D14	Population Density 1995	per km²	D26		
Runoff, CMP 6'	mm/yr/grid	D3	AirTemperature Calculated	Degrees Celsius/grid/yr*	D15	Population Density 2000	per km²	D27		
Actual Evapotranspiration	mm/yr*	D4	Infant Mortality Rate	deths per 10,000	D16	Population Density 2050	per km²	D28		
Discharge	km³/grid/yr*	D5	Runoff	mm/yr*	D17	Population 1950, Total	per grid	D29		
Discharge Corrected	km³/grid/yr	D6	Irrigated Area (402)	percent per gridcell	D18	Population 2000, Total	per grid	D30		
Water Use 2000, Agricultura	km³/grid/yr	D7	Water Use 1960, Agricultural	km³/grid/yr	D19	Population 2030, Total	per grid	D31		
Water Use 2000, Domestic	km³/grid/yr	D8	Water Use 1960, Domestic	km³/grid/yr	D20	Discharge Calculated	m³/grid/sec/yr*	D32		
Water Use 2000, Industrial	km³/grid/yr	D9	Water Use 1960, Industrial	km³/grid/yr	D21	Discharge Composite	m³/grid/sec/yr*	D33		
Cultivated Land Mask	fraction	D10	Precipitation Observed 1deg	mm/grid/yr*	D22	Runoff Modeled	mm/yr*	D34		
Crop Area	fraction	D11	Flood Plain	value	D23	Discharge Variability	ratio	D35		
Cell Area 6m	m ²	D12	Low Slope	value	D24	Active Streamorder	1-10 scale	D36		
*Time Series defaule units- <u>See instructions</u> . Enter equation using dataset symbols from the above table. Example- (D1 + D2)/2 + sqrt(D3)										
Equation - (D6-D7-D8-D9)*1000000/D30 Force range to: Min= Max=										
Options - Equation for Cell Cumulative: CC = Number of grid cells: NC.										
All arithmetic operators could be used, such as: + - * / ** (?:), as well as most of commonly used scalar functions (help), such as sqrt(), abs(), exp(), log(), sin(), cos(), tan(), etc.										
Parameters and functions are case insensitive, and spaces are allowed. 📃 Use Log Scale 📃 Use high resolution for data alignment										
Do Calculations Reset 🔽 Replace Illegal Operation with "nodata" 🗌 Get Results as Data Legend: 🔿 B/W 💿 Rainbow Return to Data Explorer										

Macro Calculator for Selected Area

Equation Decults for Folosted Aver Equation used -(D6-D7-D8-D9)*1000000/D30

Currently water use exceeds water resources over ~ 20% of Amudarya drainage basin

Irrigation & Urban Water Use in Excess of Sustainable Supplies

Gravity Changes

from Space

GRACE *Astorage* for Mississippi

Drought Is Key Feature of African Security Issues **Population Above and** Horn of **Below Water Stress** Africa **Threshold During Drought** -- 30-year duration statistics 45 Population (millions) Sahel drought **Population** (in 1000s) >100 30-yr DIA/Q Jean 10 to 100 < 0.4 0 to 10 >100 DIA/Q Horn **Southeast** 10 to 100 Sahel > 0.4 0 to 10 Southeastern Continental total: Mean --> 25% population w/ stress Africa 30-yr drought --> 40%

UNIVERSITY of NEW HAMPSHIRE

Vörösmarty et al. 2005

WBM/WTM ... WBMPlus

- WBM/WTM
 - 1-D physically based macroscale hydrological model (Vörösmarty, 1998)
 - WTM Routing based on river network (STN)
- WBMPlus
 - WBM + irrigation + reservoirs; daily time step (real time routing, irrigation, reservoirs)

Flow routing model

 $\mathbf{Q}_{t+1} = \mathbf{C}_0 \mathbf{I}_{t+1} + \mathbf{C}_1 \mathbf{I}_t + \mathbf{C}_2 \mathbf{Q}_t$

Coefficients C_0 , C_1 , C_2 , = f(River Geometry)

- **Q** = river discharge from grid cell
- I = locally generated inflow to river (less irrigation)

Reservoir Routing

WBM Irrigation Results GWSP

Simulations of WBMPlus with ECHAM-5 A1b and B1 scenarios

Large river basins in Central Asia

New Integrated Study Area GLOBAL-SCALE INITIATIVE (GSI)

Change in extremes 2050s, ECAHM4/OPYC3, A2 scenario

Modelling the impact of climate change on the GWS

GWSP Regional Case-study Criteria

...or the way we choose our regional studies to support the "G" in GWSP

- driven by continental-to-global perspectives
- link to highest degree possible biogeophysical, biology, biogeochemistry, human dimension perspectives
- focus on change-detection, attribution, feedbacks, and/or impacts
- achievable, trackable, product-driven
- targetted to engage other groups
- help answer key question of pandemic local or systematic GWS change
- help in comparative studies

Legend

- GWSP Asia Network
- Member of Scientific Steering Committee
- National GWSP Committee
- GWSP International Project Office

NEESPI Has a Broad Portfolio of Water System Studies

•Of 84 funded proposals, ~30 water-themed:

- 6 Water and Land Use/Cover Change
- 3 Hydrological Extremes
- 3 Water Use and Engineering
- 3 Integrative
- 1 Coastal/Shelf Systems
- Several Approaches
 - Broad-scale in situ and remote sensing
 - Modeling and geospatial analysis
 - Integrated data systems
 - Field studies

- 5 Cryosphere/Permafrost
 - 6 Snow
 - 2 Data Support
 - 1 Inland Water Quality

NEESPI Themes Meet These Criteria

- Multi-dimensional change over broad continental area (LUCC, Climate, Population Growth, Water Engineering, Emerging Economies)
- Region critical to Earth System (planetary heat balance, trace gases, fw fluxes to ocean)
- Impacts transend disciplinary realms and affect water, energy, C, constituents, & human systems

What Can NEESPI & GWSP Do for Each Other?

- NEESPI science issues strongly water-related
- NEESPI an ideal regional focus study of GWSP
- Attribution studies (GWSP Question1) & resilience / adaptability / governance issues (GWSP Q3) are clear avenues of collaboration w/ NEESPI
- Jointly developing hydrometeorological data integration & indicators of N. Eurasian water system state would be mutually beneficial (GWSP Indicators and Atlas Cross-cutting Themes)

