Biodiversity, Land Use, and Climate: Evolution of Three LCLUC-Funded Projects

Andrew Hansen Montana State University

Jack Liu Michigan State University

Volker Radeloff University of Wisconsin

NASA Land Cover Land Use Change Annual Meeting

April 4-6 2007

NASA

LCLUC History

- Started in mid 1990's.
- Focused on the causes and consequences of land change.
- Novel in integrating natural and social sciences.
- Eclectic group of geographers, sociologists, economists, ecologists.
- Regional case studies relying on first satellite-based land change detection
- In retrospect, extremely innovate and groundbreaking.

Topics

A tale of three LCLUC biodiversity P.I.s

Jack Liu – Human consumption as a driver of biodiversity impact

 Andy Hansen – Biophysical influences on biodiversity and land use

 Volker Radenoff – National sociopolitical system influence on biodiversity

Human Impacts on Panda Habitat

Jianguo (Jack) Liu (PI) (with many collaborators)

Center for Systems Integration and Sustainability Michigan State University http://www.csis.msu.edu

- One of the largest (200,000 ha)
- 10% of wild pandas (~1,600)
- Local residents (> 4,500)

Highly suitable habitat declined from 14,000 ha to 12,000 ha

(Liu et al., 2001, Science)

Why?

Household Production and Consumption as an Important Driving Force behind Habitat Degradation

Housing, fuel wood, agriculture

Extend Findings to Other Areas

Rates of Growth of Populations and Households (1985-2000)

 Do households increase faster than human population sizes at national and global levels?

Reduction in Average Household Size is a Main Reason for Faster Household Growth

Extend Findings to Other Areas

Rates of Growth of Populations and Households (1985-2000)

• Do households increase faster than human population sizes at national and global levels?

What are the implications of growth of population x consumption for sustaining biodiversity??

Reduction in Average Household Size is a Main Reason for Faster Household Growth

Policies Enacted to Protect and Restore Habitat

Policies Enacted to Protect and Restore Habitat

Eco-hydropc - Local case study leads to better (2002 understanding of global trends

- Lcluc change analysis allows society to visualize change and enact policy
- Improved local sustainability led to advances in global sustainability?

To eliminate fuelwood consumption

To prevent illegal harvesting

To return cropland to forest

reen

Ecology and Socioeconomics in the New West: A Case Study from Greater Yellowstone.

Hansen et al. 2002. BioScience.

1. 25-Year History of GYE: Exurban growth largest land use change.

2.Causes and Consequences:

•Biophysical factors limit high biodiversity to hot spots;

Biophysical factors also limit exurban development to same landscape locations with negative impacts on biodiversity;
Natural amenities drive of exurban growth;

3. Risk: Future growth can be placed to reduce impacts on biodiversity.

Ecology and Socioeconomics in the New West: A Case Study from Greater Yellowstone. Hansen et al. 2002. BioScience.

1. 25-Year History of GYE: Exurban growth largest land use change.

2.Causes and Consequences:

•Biophysical factors limit high biodiversity to hot spots;

Biophysical factors also limit exurban development to same landscape locations with negative impacts on biodiversity;
Natural amenities drive of exurban growth;

3. Risk: Future growth can be placed to reduce impacts on biodiversity.

Ecology and Socioeconomics in the New West: A Case Study from Greater Yellowstone.

Hansen et al. 2002. BioScience.

1. 25-Year History of GYE: Exurban growth largest land use change.

2.Causes and Consequences:

- Biophysical factors limit high biodiversity to hot spots;
- Biophysical factors also limit exurban development to same landscape locations with negative impacts on biodiversity;
- Natural amenities drive of exurban growth;

3. Risk: Future growth can be placed to reduce impacts on biodiversity.

Ecological Applications Volume 15, Number 6 December 2005

Invited Feature-Introduction

Land-Use Change in Rural America: Rates, Drivers, and Consequences • Andrew J. Hansen, Guest Editor and Daniel G. Brown, Guest Editor. pages 1849–1850.

Invited Feature

RURAL LAND-USE TRENDS IN THE CONTERMINOUS UNITED STATES, 1950–2000 • Daniel G. Brown, Kenneth M. Johnson, Thomas R. Loveland, and David M. Theobald. pages 1851–1863.

THE THREE PHASES OF LAND-USE CHANGE: IMPLICATIONS FOR BIODIVERSITY • Michael A. Huston. pages 1864–1878.

ECOLOGICAL IMPACTS AND MITIGATION STRATEGIES FOR RURAL LAND MANAGEMENT • Virginia Dale, Steve Archer, Michael Chang, and Dennis Ojima. pages 1879–1892.

EFFECTS OF EXURBAN DEVELOPMENT ON BIODIVERSITY: PATTERNS, MECHANISMS, AND RESEARCH NEEDS • Andrew J. Hansen, Richard L. Knight, John M. Marzluff, Scott Powell, Kathryn Brown, Patricia H. Gude, and Kingsford Jones. pages 1893–1905.

ECOLOGICAL SUPPORT FOR RURAL LAND-USE PLANNING • David M. Theobald, Thomas Spies, Jeff Kline, Bruce Maxwell, N. T. Hobbs, and Virginia H. Dale. pages 1906–1914

Land Use Change Around Protected Areas and Consequences for Biodiversity

Greater Yellowstone Ecosystem, US

> Yucatan, Mexico

Santarém, Brazil

Surrounding Ecosystem

East Africa

Human land use

Wolong, SW China

Borneo, Indonesia

Ecological Applications Invited Feature: Land Use Change around Protected Areas

In Press

Hansen, A.J. and R. DeFries. Land use change around protected areas: Implications for sustaining biodiversity.

Hansen, A.J. and R. DeFries. Ecological mechanisms linking nature reserves to surrounding lands.

Vester, H., D. Lawrence, R. Eastman, B.L. Turner II, S. Calme, R. Dickson, C. Pozo, and F. Sangermano. Land change in the Southern Yucatan and Calakmul Biosphere Reserve: Implications for habitat and biodiversity.

Gude, P., A.J. Hansen, and D. Jones. Biodiversity consequences of alternative future land use scenarios in Greater Yellowstone.

Vina, A., S. Bearer, C. Xiaodong, H. Guangming, M. Linderman, L. An, H. Zhang, Z. Ouyang, and J. Liu. Temporal changes in connectivity of giant panda habitat across the borders of Wolong Nature Reserve (China).

DeFries, R., A. Hansen, R. Reid, B. Turner, L. Curran, J. Liu, E. Moran. Towards scientific principles for regional management of landscapes surrounding nature reserves.

Biophysical and Land-use Controls of Biodiversity: Regional to Continental Scales

NASA EOS

MODIS Products and Bird Diversity

Bird diversity is related to ecosystem energy.

Mid-Energy Ecoregions: Appalachians

:50

Managing along Biophysical Gradients

Richness

Energy

Managing along Biophysical Gradients

Conservation Category	Low Energy	Medium Energy	High Energy
Conservation Zones	Protect high energy places	Protect more natural areas	Protect low energy places
Disturbance	Use fire, flooding, logging judiciously in hotspots	Similar to "Descending"	Use disturbance to break competitive dominance
			Use shifting mosaic harvest pattern
			Maintain structural complexity
Landscape Pattern	Maintain connectivity due to migrations		Manage for patch size and edge
Sensitive Species	Many species with large home ranges and low population sizes due to energy limitations		Forest interior species
Exotics		High exotics likely due to productivity and high land use	
Protected Area Size	Large	Smaller	Smaller
Land Use	Low overall	High overall	Moderate overall
	Focused on hot spots	Emphasize "backyard" conservation	More random across landscape
	Plan development outside of hotspots	Apply restoration	

Does Ecosystem Productivity Modify Vegetation Structure Effects on Biodiversity?

Verschuyl et al. in prep.

Coast Range Springfield Cle Elum Goldfork Yellowstone

Does Ecosystem Productivity Modify Vegetation Structure Effects on Biodiversity?

Verschuyl et al. in prep.

Coast Range Springfield Cle Elum Goldfork Yellowstone

Yes, structure is most limiting in high energy systems.

Does Ecosystem Productivity Modify Disturbance Effects on Biodiversity?

R²=.16 P-value <.01

<u>P-value <.01</u>

Does Ecosystem Productivity Modify Fragmentation Effects on Biodiversity?

Hypothesis: Edge effects are more pronounced in high energy environments

High Biomass System

Low Biomass System

Hansen et al. in prep. Data from published studies

Managing along Biophysical Gradients

Conservation Category	Low Energy	Medium Energy	High Energy
Conservation Zones	Protect high energy places	Protect more natural areas	Protect low energy places
Disturbance	Use fire, flooding, logging judiciously in hotspots	Similar to "Descending"	Use disturbance to break competitive dominance
			Use shifting mosaic harvest pattern
			Maintain structural complexity
Landscape Pattern	Maintain connectivity due to migrations		Manage for patch size and edge
Sensitive Species	Many species with large home ranges and low population sizes due to energy limitations		Forest interior species
Exotics		High exotics likely due to productivity and high land use	
Protected Area Size	Large	Smaller	Smaller
Land Use	Low overall	High overall	Moderate overall
	Focused on hot spots	Emphasize "backyard" conservation	More random across landscape
	Plan development outside of hotspots	Apply restoration	

Vulnerability of US National Parks to Land Use and Climate Change and Variability

Andrew Hansen Montana State University Steve Running University of Montana

Ecological Conditions of US National Parks: Enabling Decision Support Through Monitoring, Analysis, and Forecasting

NASA Applications Program: Decision Support through Earth-Sun Science Research Results Project

And

NPS I&M Program

Pilot national parks

Managing along Biophysical Gradients

Conservation Category	Low Energy	Medium Energy	High Energy	
Conservation Zones	Protect high energy places	Protect more natural areas	Protect low energy places	
Disturbance	Use fire, flooding, logging judiciously in hotspots	Similar to "Descending"	Use disturbance to break competitive dominance	
			Use shifting mosaic harvest pattern	
			Maintain structural complexity	
Landscape Pattern	Maintain connectivity due to migrations		Manage for patch size and edge	
Sensitive Species	Many species with large home		Forest interior species	
	Regional case study			
Exotics	Theory			
Protected Area Size	Continental-global tests			
Land Use	Revise conservation strategies			

Land cover change in Eastern Europe and resulting effects on biodiversity

A NASA-LCLUC and NEESPI Project

Introduction

In 1990, the Soviet Union broke down, and with it's control on eastern Europe

 How did this socioeconomic change affect LCLUC, and thus biodiversity?

Brown bears in European Russia

Bear density in 2000

MODIS Landcover

European Bison in the Carpathians

Kuemmerle et al. 2006. *Remote Sensing of Environment, 103:449-46* Kuemmerle et al. 2007. *Ecological Applications, in press* Kuemmerle et al. 2007. *Remote Sensing of Environ<u>ment, in review</u>*

Eastern Europe LCLUC

- Parts of Eastern Europe are re-wilding
 Land use intensity is decreasing
- Remote sensing is great for habitat analysis and biodiversity science
- Important to identify conservation threats and opportunities

LCLUC/biodiversity projects in the U.S.

- * NASA-Biodiversity: Remote sensing and avian biodiversity patterns in the United States
- * NASA-IDS: Disturbance effects on avian biodiversity
- DoD-SERDP: Habitat monitoring for migratory birds
- **US Forest Service: The wildland-urban interface in the U.S.**
- Park Service: LCLUC near Pictured Rock and Indiana Dunes
- WI-DNR: LIDAR based forest bird habitat assessment

Conclusions

Highlighted development three labs under funding by LCLUC biodiversity.

Stages of development:
 Local case studies
 Theory
 Continental to global tests
 Conservation and management

This is true for many NASA P.I.s.

 LCLUC has also have strong positive impact on other programs: NSF Biocomplexity, USDA Managed Forests Ecosystems, most recently – NSF NEON.

National Ecological Observatory Network

How will ecosystems and their components respond to changes in natural- and human-induced forcings such as climate, land use, and invasive species across a range of spatial and temporal scales?

NEON puts the LCLUC regional studies into a national design for long term study

Future Directions for LCLUC Biodiversity?

Making conservation biology spatial

Habitat structure vs productivity as drivers

Spatial variation in biophysical potential for biodiversity, land use, and biodiversity responses;

Use this to develop locally effective conservation and management

Human population and consumption

 (e.g., US is encouraging rapid population growth without evaluation of consequences)
 Socioeconomic and ecological consequences of

population size and consumption habitats

Managing natural amenities-based economies

Future Directions for LCLUC Biodiversity?

Unpredicted thresholds of change in land use (e.g., soviet union)

- Due to climate change?
- Due to human sociopolitical systems

LCLUC past, present, alternative futures
 Elevate land use to level of climate change in public and policy discussions.
 Evaluate the range of creative new land use designs now being employed

Partner with NEON