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People want to use LAND for:
* Food

* Energy

* Living

So all compete for the LAND,
which drives LCLUC.



Land cover/land use changes

Earth at Night Astronomy Picture of the Day
More information available at: 2008 October 5
http://apod.nasa.gov/ap081003.html http://apod.nasa.gov/



Project Goals :

Understand complex interactions among land use, ecosystem and climate and evaluate
the impacts of current and projected LCLUC on climate, water and carbon cycling in
the region of monsoon Asia in the first half of 215t century by using an integrated
model of regional climate, ecosystem, land use and economy; remote sensing and field
observations.

Key questions:

* Question 1 —What are current patterns and projected changes in land use and land cover in the first
half of 215t century?

* Question 2 - How have the carbon and water cycles been changed by LCLUC in the region in the
past and how will the carbon and water cycles be changed by LCLUC in Monsoon Asia in the first
half of 215t century?

* Question 3 - What are relative roles of LCLUC and non-LCLUC factors (e.g., climate
variability/change, nitrogen deposition, troposhereic ozone concentration) on climate change, water
and carbon cycling?

* Question 4 - To what extent do the LCLUC modulates the Asia monsoon climate and how will the
changed monsoon climate impact LCLUC in Monsoon Asia in the first half of 215t century?



What are current patterns and projected changes in LCLUC during
1900-2050 and the changes in non-LCLUC factors?



Global and regional land cover and land use data

Data name Time period Resolution Major character Reference
Historical croplands 1700-1992 0.5 degree Global Cropland Ramankutty and
Dataset distributions Foley, 1999
_ i 5 minute Global cropland, Goldewijk and
HYDbE S 1700-2005 pasture and cultivated Ramankutty, 2004
land use
The Global Landuse 1700-2000 1 degree the fraction of crop, Hurtt et al., 2006
Modeling Data pasture, primary land,
secondary land, water,
and ice
1992 Major Crops 1992 5 minute major crops Leff et al., 2004
Dataset
MODIS land cover 2001-present 1 km multiple classification http://modis-
schemes describing land.gsfc.nasa.gov/lan
land cover properties dcover.htm
GLC2000 2000 1 km Base on SPOT 4 http: //www-
VEGETATION oyvm.jre.it/ ele2000/det
instrument aultGLC2000.htm
Global Land Cover 1992/1993 1 km Based on IGBP Loveland et al., 2000
Characteristics Data AVHRR 10-day
Base composites
UMD 1km Global Between 1981- 1 km AVHRR 1981-1994 Hansen et al, 2000
Land Cover 1994
China’s National 1990, 1995, 2000 | 30 meter Landsat TM/ETM Liu et al., 2003, 2005
Land Use/Cover

Dataset
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Pafential Vegetation :
™ Tropical Evergreen Forest/Woodland
B Tropical Deciduous ForestWoodland
[ Temperate Broadieaf Evergreen ForestWoodland
[ Temperate Needleleaf Evergreen Forest/Woodland
[ Temperate Deciduous ForestWoodland
[ Boreal Evergreen ForestWoodland
[] Boreal Deciduous ForestWoodland
Mixed
B savanna .
] Grassland/Steppe
[ Dense Shrubland
[ Open Shrubland
I Tundra
[JDesert

 [JPolar Desert/Rockiice

UMD1km

[ water

[ evergreen Needieleat Forest
[ & eroreen Broadieat Forest

[ occiduous Needleleaf Forest
[ occiduous Broadieaf Forest

[ mixed Forest

B voodiand

[ wooded Grassiand

B ciosed shrubland

[ open shrubland

[ sare Ground
[ urvand and Buit

MOD12Q1
T[] water
[ Evergreen needeleat forest
B =vergreen broadeaf forest
B occiduous needieleaf forest
I occiduous broadieat forest
[ Mixed forests

I ciosed shrublands
[ open shrublands ,

I vvoody savannas

[ savannas

[ crasslands

Cropland

B urban and buit-up

[ Barren or sparsely vegetated
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Fractional settlements developed from a combination of DMSP-OLS, MODIS NDVImax, and Landsat ETM+ images
in 2000 in southeastern China, highlighting three urban regions (the administrative boundary at the provincial level
was overlaid on the human settlement image). (Lu et al., 2008)



1900

2000

(A) Crop land

(B) Urban area
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Figure 4. Changes in the area of forest, cropland, urban,
and woodland during 17002005 (unit; million ha).

Land-use/Land-cover transitions during 1700-2005 (a) and during 1980-2005 (b) (Liu & Tian, 2010)



Increased Plantation forest area and forest age
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Seasonal pattern of Standardized LAI in Asia’s cropland
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Future land cover/land use change induced by biofuel crop
production during the 21st century

A B

The area of biofuel crop would
increase dramatically and account for

) = | 14% of total cropland area under the

£ e £ policy scenario by the year of 2100;

5 =i | 2 while two major land types, natural

E = E forest and pasture, would be largely
converted for biofuel production
under both scenarios over MA region

) 50 e 00 0 00 during 2000-2100.
{ear rear

C D E

B bau_reference

W policy_bio

area (10,000 km?2)

2020 2050 2100

Future land use change under the reference scenario (A) and policy scenario (B); Spatial patterns of biofuel crop in Monsoon Asia in the 215t
century under the reference scenario (C) and policy scenario (D); Changes in the area of biofuel crop in Monsoon Asia in the 215t century
(reference scenario and policy scenario) (E), generated by the MIT Emissions Prediction and Policy Analysis (EPPA) model.



Other major environmental factors - Climate
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Other major environmental factors
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During the 20™ century, both
nitrogen deposition and ozone
pollution index elevated over
MA region with the highest
increase of Ndep and AOT40
in Southeast China and
Northwest Outer Mongolia,
respectively.

Since 1960, irrigated area
almost doubled and fertilizer
application rate dramatically
increased by 8 times.

Figure: Spatial pattern of changes in
nitrogen deposition (gN/m?) (a) and
Ozone AOTA40 index (ppb-hr) (b);
Annual average of irrigation/non-
irrigation land area (c), and fertilizer
application rate (d) over MA region
during the 20™ century.



Across MA region,

I: Land cover/land use patterns have been dramatically altered over the last
20™ century with the significant expansion of agricultural land and urban land;
and the conversion of natural to managed ecosystems will continuously

take place as an increasing demand for biofuel production during the 21st
century.

lI: Land management practices (e.g. irrigation and fertilizer application) have
been applied intensively/extensively with the expansion of managed cropland
aiming to increase crop productivity during the late half of 20t century.

llI: Changes in other environmental factors imply that MA region has
experienced increased drought stress, elevated nitrogen deposition and
ozone pollution. The MA region will face warming climates with significantly
increasing temperature in the 21st century.

IV: Changes in land cover/land use, climate and atmospheric chemistry
substantially varied from place to place.




How have the carbon and water cycles been changed by LCLUC in
the past and how will the carbon and water cycles be changed by
LCLUC in MA region in the first half of 215t century?



Integrated Regional Earth System Model (IRESM)

Integrated Regional Earth System Model (IRESM)
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Ecosystem and hydrological models within IRESM
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Figure (A) Coupling of biogeochemical and hydrological cycles (C, N, P, H20) in ecosystem module of IRESM - DLEM ;
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Driving Factors

Controlling Factors

INPUT

Climate
.Temperature
.Precipitation
.Radiation
.Relative Humidity

Atmospheric Compositions

Nitrogen Deposition

Land Use
.Deforestation
.Urbanization
.Harvest
.Fertilization
rrigation

Other Disturbances
Wildfire
.Disease

.Climate Extremes

Sail
.Physical Properties
.Chemical Properties
.Depth

Geomorphology
.Elevation
.Slope
Aspect

River Network
.Flow Direction
Accumulative Area
.River Slope
.River Length
.River Width

Vegetation Functional Type

Cropping System

MODEL

Dynamie
Land
Ecoytem

Model

OUTPUT

Biogeochem.-hydrolog. cycles

Carbon Fluxes and Storage:
.Carbon fluxes (GPP, NPP, Rh,NCE, NEP, CH,,
VOC, DOC, DIC)
.Carbon storages (LeafC, stemC, litterC, rootC,
reproductionC, soilC)
Water Fluxes and Storage :
.ET, Runoff, Soil moisture
Nitrogen Fluxes and Storage :
Nitrogen fluxes (N20, NO, N2)
Nitrogen storages (LeafN, stemN, litterN, rootN,
reproductionN, soilN), TN
Phosphorus Fluxes and Storage:

.LeafP, stemP, litterP, rootP, soilP, TP

Climate related:
.GHG emissions (e.g. CO2,CHa4 N20 fluxes); VOC
flux, Black carbon, ...

Ecosystem Goods
.Crop yield; Wood Products; Biofuel, ...

Water related

.Surface Runoff; Subsurface Flow;
ET; Soil Moisture; water use efficiency
.River Discharge;

Nutrients related:

N and P Storage and leaching;
.Export of TN and TP;

.Export of DOC and POC

Ecosystem Goods and Services




MIT Emissions Prediction and Policy Analysis
(EPPA) Model

o MIT Emissions Prediction and Policy Analysis (EPPA) Model
® Computable General Equilibrium

(CGE) model of world economy

Primary Facto

-
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gfu
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e

n_p

. . . | 2]
with regional/sectoral detail. — \5;
/ Region C
ansumer Producer Trade
ectors Sectors
Flows
e Fully treats demand/supply,
capital/investment, Expenditures EE : 1
macroeconomy/trade ‘
implications of growth, policies Region A Region B
alternative tEChnOIOgIeS Model Features Mitigation Policies
* All greenhouse-relevant gases * Emissions limits
* Flexible regions * Carbon taxes
* Flexible producer sectors * Energy taxes
* Energy sector detail * Tradeable permits
+ Welfare costs of policies * Technology regulation




Global Land System Interactions

COUPLED ATMOSPHERE-OCEAN

MODEL WITH INTERACTIVE CHEMISTRY

Radiation, Humidity, Pressure, Surface Heat and
Winds, Temperature, Precipitation ) Momentum Fluxes

COMMUNITY LAND MODEL (CLM)
(TERRESTRIAL BIOGEOPHYSICS)

onthiy Aic':’mopm:.
€0, CH, and Aaahly Daily Ravia
\ . Snlar Radiation
N;0 Fuxes Aaathly: P *Rainfall-Event Statistics B
*Evapotranspiration +Soil Hydrothermal Profile +Soil Hydrothermal Profiles
Daily: *Snow Water Equivalent Depth Hougly:
+Soil Hydrothermal Profile *Surface Runoff and Drainage

+Soil Hydrothermal Profiles

CARBON AND NITROGEN
DYNAMICS MODULE

Soil Carbon
CH,EMISSIONS  PW"™%&8 N0 EMISSIONS

MODULE MODULE

DYNAMIC TERRESTRIAL ECOSYSTEMS MODEL (TEM)
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Historical LCLUC-induced changes in C storage and water yield over MA region
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Changes in carbon storage (left) and water yield (right) in terrestrial ecosystems of monsoon Asia induced
by land use and land cover change during 1700-2005 as simulated by the Dynamic Land Ecosystem
Model (DLEM).



Historical LCLUC-induced changes in carbon and water fluxes over MA region

Change rate
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B -s0% - -50%
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[ 30% - 50%
[ 50 - 80%
B - 0%

Spatial distributions of annual changes in NPP (a), ET (b), and WUE (c) due to LCLUC in monsoon
Asia during 1948-2000 (Tian et al. 2011).
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monsoon Asia during 1948-2000 (Tian et al. 2011).



Historical LCLUC induced changes in regional carbon and water fluxes

Impacts of (A)Deforestation
/Reforestation and (B) Crop
expansion on evapotranspiration
over China during 1900-2000.
Liu et al., 2009, JAWRA

Crop expansion induced carbon
storage change during 1951-2000
in South and Southeast Asia

Tao et al., 2011, In Review.
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Future LCLUC induced changes in accumulative land C flux in MA region

Changes in the cumulative land carbon flux for selected countries in the monsoon Asia region over the

215t century.

Cumulative Carbon Flux (Pg C )

Cumulative Carbon Aux( Pg C )

a) No Climate Policy

2000 2020 2040 2060 2080 2100

Year

b ) Energy-Only Policy

2000 2020 2040 2060 2080 2100

Year

Cumulative Carbon Flux{PgC )

¢ ) Energy+Land Policy

2000 2020 2040 2080 2080 2100

Year

= Higher-lncome Asia
= China
== |ndonesia
India
—Japan




What are relative roles of LCLUC and non-LCLUC factors (e.g.,
climate variability/change, nitrogen deposition, troposhereic ozone
concentration) on carbon/water and cycling?
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Historical climate impacts on carbon and water fluxes

S0E 60°E T0E B0°E 90°E 100°E M0E 1206 130°E 140°E 50°E 60°E T0°E 80°E 0°E 100°E 1OE 120°E 130°E 140°E
1 1 1 1 1 1 L 1 1 1 1 1 1 1 1 L 1 1 L 1
p=60"
- [=50°N
.
40N B
=30
w1
207N -1 [=20"N
=1
N
=0
I=10°S
10°5 = (b)
T T T T T T T T
S0°E B0°E T0E 80°E WE 100°E MOE 120°E 130°E 140°E 150°E
[=60°N
Change rate
50°N—4 [=50°N
I - -0
1 " B 509 - -50%
o Lo B -50% - -30%
[ -30% - -20%
20N =20 \:I -20% - -5%
[ ]-5%-5%
10°N= 10N ‘:l 5% _ 20%
] L [ 20% - 30%
I 30% - 50%
= o e .o
T T T T T T T T T T T
S0 80 80°E 0°E 120

Spatial patterns of annual average change rates of NPP
(@), ET (b) and WUE (c) due to climate change in
monsoon Asia during 1948-2000.(Tian et al. 2011)

1 Temperature I Precipitation - COthers

a0

20

Q

-20

NPPchange (g C/m?fyr)

-90

Climate

T
! ‘hn’ﬂ.lllﬂll-l‘--u.ln

1958 1968 1978 1988 1998

ETchange (mmfyr)
N
Q

1948

1958 1968 1978 1988 1998

WUEchange (z Cf kg H,0)
666600000000
FOOOOOOOOORER
OO ERNONREOI@ONE

1248

1958 12968 12978 1988 1998

Impacts of climate change (temperature,
precipitation and others) on net primary
productivity (a), ET (b) and water use
efficiency (c) in Monsoon Asia over the
period 1948-2000. (Tian et al. 2011)




Future climate impacts on C and water fluxes over MA region
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Impacts of tropospheric ozone pollution on carbon flux
(Net Primary Productivity-NPP)
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Change rates of net primary productivity induced by tropospheric ozone pollution between the 190s and
the 1990s over China’s grassland (a) and forest area (b). (Ren et al. 2007, JGR; Ren et al. 2010, GEB)



Impacts of LCLUC and other environmental factors on C flux in China

0.50
J/Eclimate W CO,; O, ®Ndeposition ®N fertilization ELCLUC #NAllcombine
0.40 +
0.30 -

0.20

0.10

2

3 ‘lA I

-------Q-

0.00

Decadal Mean Annual NCE (Pg C/yr)

-0.10
1960s 1970s 1980s 1990s 2001-2005 1961-2005

Tian, HQ, etal. 2011. China’s terrestrial carbon balance: Contribution from multiple global change factors, Global
Biogeochemical Cycle (Tian et al. 2011).



GHGs emissions in China
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N inputs (N deposition and Fertilizer application) and their

Impacts on Global Warming Potential (GWP) in China
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GHG in MA
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Figure The 50-year average of ecosystem-atmosphere exchange of CO2 (g Cm-2a1), CH4(g Cm-2al), and N20 (N m-
2a'1), the resulted global warming potential GWP( CO2 eq m-2a1) during 1951-2000 estimated by DLEM model.



Future LCLUC induced changes in GHG balance
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How do the LCLUC modulate the Asian monsoon climate?



Significant
results
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Integrated Regional Earth System Model (IRESM)

Integrated Regional Earth System Model (IRESM)

Regional Climate and Atmosphere Chemistry (CWRF with Aerosols and Chemistry)
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Seasonal changes in Temperature and Precipitation induced

by LCLUC acro
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Historical Land Cover/Land Use change in Indian continent

Potential vegetation LUCCin 1700 LUCC in 2000
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Legend
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Model evaluation
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Regional level

1lal comparison of MODIS-derived NPP and simulated NPP
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Figure Spatial patterns of MODIS-derived NPP (a) and simulated NPP (b) in Monsoon Asia during 2000-2006 and comparisons of
the simulated NPP with MODIS-NPP (c) and field observational data (d) during 1980-2000 (Unit is g C/m?/yr). The solid line is
linear trend with regression equation and the dash line is 1:1 line. The data points in figure c are randomly sampled from MODIS-
derived NPP and modeled estimates in the same period. Model performance is statistically accepted (y=1.0145x, U=0.22). In
comparison with observed NPP data, the indices used for measuring model validity in each biome type in figure d are: boreal forests
(y=0.823x, U=0.30, N=153), grassland and meadow (y=1.053x, U=0.20, N=14), temperate forests (y=0.922x, U=0.20, N=119),
tropical forests (y=0.913x, U=0.23, N=195).



Regional level

Temporal comparison of RS-derived NPP and simulated crop NPP
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Changes in annual net primary production (NPP: Tg C/yr) of China’s croplands estimated by
DLEM-Ag model, GLO-PEM model, AVHRR, and MODIS database during 1981-2005.
(Prince and Goward 1995; Goetz et al. 2000; Cao et al. 2004; Running et al. 2004; Heinsch
et al. 2003)



Comparison of simulated NEP and observed NEP
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Figure Comparison of daily net ecosystem production simulated by DLEM (a, upper) in temperate evergreen
needleleaf forest in Qianyanzhou, Southeastern China ; Comparison of DLEM-simulated daily Net Ecosystem
Production (NEP) against observed data in dry farmland of Yucheng, northern China(b, lower) . Tian et al.,2011.
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N, O flux (mg N m= day!)
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Comparison of simulated N:O and observed N:O
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Figure comparison of DLEM-simulated and field observed ET at flux tower of Palangkaraya drained forest (PDF) in Indonesia: (a),
daily pattern of precipitation, simulated and observed ET (unit: mm/day) during Jan. 1-Dec. 31, 2004; (b), scatter plot of simulated and
observed ET during Jan.1, 2002-Dec. 31, 2005. (c) is the simulated ET compared with observations in monsoon Asia, including mixed
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http://www.eol.ucar.edu/projects/ceop/dm/insitu/sites/ceop_ap/Tongyu/Cropland) and 12 meteorological stations in China (Song et al.,
2010). The gray solid lines in b and c are linear trend with regression equation and the dash line is 1:1 line.
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Summary

In most area of Monsoon Asia, total carbon storage decreased from the year 1700 to 2005.
However, net carbon exchange for the recent 10 years has been increased particularly in East
Asia primarily due to increased forest plantation and elevated nitrogen input.

Climate extremes, especially drought, have significantly reduced carbon storage and
productivity in cropland, grassland and forest. The negative impacts of climate change or
extreme events, however, could be adapted/mitigated through optimizing land management
practices including irrigation and fertilizer applications.

From both scientific and policy perspectives, it is of critical importance to take multiple
greenhouse gases into consideration. For example, 85% of the cooling effects caused by
atmospheric CO, sequestration could be offset by CH, and N,O emissions from China’s
terrestrial ecosystems.

Land conversion from forests to croplands led to a decrease in water use efficiency (WUE). In
contrast, WUE increased largely while cropland was converted to grassland and forest.
Simulated results also showed that intensive land management practices could alleviate the
decrease in WUE induced by climate change and land conversion.

Model simulation indicates that annual mean water yield shows a significant gradient from
North to South, Southeast Asia. In the recent decade, water yield considerably decreased in
northern and southern parts of Monsoon Asia, which means a drought occurred in North
China, most area of India.

Large-scale land cover/land use change could alter regional climate. Conversion from natural
vegetation to cropland leads to decreases in both temperature and precipitation, but could
increase precipitation if converting from natural vegetation to irrigated cropland.

Uncertainties could emerge from three different sources: input dataset, key model
parameters, different model components and their integration.



Needs for Synthesis Studies

Developing consistent data sets for driving
models.

Model-Data intercomparison
Model-model intercomparison
Uncertainty analysis associated with:

— model parameters, coupling, scaling, Legacy effect
(Disturbance and land use history);
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