Africa Burned Area Product Generation with Landsat-8 and Sentinel-2 and testing the use of high resolution Planetscope imagery

David P. Roy, Haiyan Huang, Vittor Souza-Martins, Luigi Boschetti²

Center for Global Change and Earth Observations, Department of Geography, Environment, & Spatial Sciences Michigan State University

² Department of Forest, Rangeland and Fire Sciences University of Idaho

> 2020 NASA LCLUC Annual Science Team Meeting October 19th 2020

AVHRR

1km NDVI active fire detections

Red dots don't provide reliable burned area

Okavango Delta, Botswana, Sept 6th 1989

Roy, Giglio, Kendal, Justice, 1999, *IJRS*

Science of Remote Sensing 2 (2020) 100007

Contents lists available at ScienceDirect

Science of Remote Sensing

journal homepage: www.journals.elsevier.com/science-of-remote-sensing

Full Length Article

On the outstanding need for a long-term, multi-decadal, validated and quality assessed record of global burned area: Caution in the use of Advanced Very High Resolution Radiometer data

L. Giglio^{a,*}, D.P. Roy^b

^b Center for Global Change and Earth Observations, and Department of Geography, Environment, & Spatial Sciences, Michigan State University, East Lansing, MI, 48824, USA

Roy, Giglio, Kendal, Justice, 1999, *IJRS*

^a Department of Geographical Sciences, University of Maryland, College Park, MD, 20742, USA

Movie:

5 Months of 500m MODIS mapped burning, Okavango Delta, Botswana

Roy, Lewis, Justice, RSE, 2002

MODIS Burned Area Product Validation undertaken at 12 Landsat ETM+ scenes distributed from dry savanna to wet miombo woodland to quantify product accuracy over range of representative burning conditions -> became the CEOS protocol for burned area product

Landsat ETM+

Sept. 4th

Landsat ETM+

Oct. 6th

Colors show approximate day of burning mapped at 500 m by MODIS between the two Landsat ETM+ acquisition dates

NASA MODIS Collection 6 500 m Burned Area Product Global Validation

following CEOS protocol: comparison with burned area maps interpreted from 558 Landsat-8 two date image pairs

Giglio, Boschetti, Roy, et al. RSE, 2018

Explore this journal >

JGR

Global burned area and biomass burning emissions from small fires

J. T. Randerson 🗠, Y. Chen, G. R. van der Werf, B. M. Rogers, D. C. Morton

First published: 11 December 2012 Full publication history

DOI: 10.1029/2012JG002128 View/save citation

Accounting for small fires increased total global burned area by ~35%, from 345 Mha/yr to 464 Mha/yr

"A formal quantification of uncertainties was not possible ..."

Where & When are the missing small fires occurring?

MODIS tile h20v10

Number of cloud-free observations July 2016 Landsat 8 Sentinel-2A

MODIS tile h20v10

NASA LCLUC Multi-Source Land Imaging (MuSLI) 30 m Burned Area Production: all of Africa, including Madagascar, south of the Tropic of Cancer (23.44° N)

NASA HLS 30 m surface NBAR (2.2, 0.86, 0.66 μm)

burned areas apparent in magenta

January 28th 2019

Central African Republic

MODIS 1 km active fire detections (Terra & Aqua, Day & Night)

January 2019

Central African Republic

MODIS 500 m Burned area product

January 2019

Central African Republic

30 m Burned area product derived from HLS

January 2019

Central African Republic

Dec 2018

- **1-2** 3-5 **6-8** 9-11 12-14 15-17 **18-20** 21-23 24-27 **28-31**
- water

NASA

Jul 2019

1-2 3-5 **6-8** 9-11 12-14 15-17 **18-20** 21-23 24-27 28-31

water

NASA

Sep 2019

1-2 3-5 **6-8** 9-11 12-14 15-17 **18-20** 21-23 24-27 28-31

water

NASA

MODIS 500m burned area

July 2019

Marmonized Landsat Sentinel-2

Sentinel-2 & Landsat-8 30m burned area

July 2019

Ground assessment Kruger National Park, South Africa, October 2018

Validation: Acquired >9100 Planetscope images under the NASA Commercial Smallsat Data Acquisition (CSDA) program

Numbers show the number of ordered images with cloud cover <= 30%

Images sampled in space and time based on MODIS active fire detections, stratified by biome (colors)

Images sample Africa Fire Year 2019 (Nov. 2018 – Oct. 2019)

Total number of Planet images ordered = 9109

Planetscope July 3 rd

630nm 820 nm 545 nm

Preliminary Example validation

> Zambia Western Province

110 x 110 km 36600 x 36600 3m pixels

Planetscope July 31st

630nm 820 nm 545 nm

Preliminary Example validation

> Zambia Western Province

planet.

110 x 110 km 36600 x 36600 3m pixels

Day of burning July Sentinel-2A/2B Landsat-8

Preliminary
Example
validation

6-8 9-11 12-14 15-17 18-20 21-23 24-27 28-31

Marmonized Landsat Sentinel-2

110 x 110 km 3660 x 3660 30m pixels

Comparison of July burned proportions mapped by 3 m PLANET reference and 30 m Landsat-8 & Sentinel-2

	8093.4 km ² compared		PLANET reference (assumed to be truth)		
			Burned [km²]	Unburned [km²]	Row total [km ²]
Preliminary example validation results	Landsat-8 & Sentinel-2	Burned [km²]	83.7	56.4	140.7
		Unburned [km²]	173.6	7780.3	7953.7
		Column total [km ²]	257.0	7836.7	8093.4

Overall accuracy = 97% Omission error [0-1] = 0.40 Commission error [0-1] = 0.67

NASA MODIS Collection 6 500 m Burned Area Product Global Validation

following CEOS protocol: comparison with burned area maps interpreted from 558 Landsat-8 two date image pairs

Transfer learning: use the Landsat-8 burned area validation data as a training source to classify 2019 PlanetScope 3 m data

Deep Learning: Training and Validation 256 x 256 Landsat 30 m pixel patches

Madagascar

False-color (NIR/Red/Green)

False-color (NIR/Red/Green)

August 21 2019

Planetscope-0 UTC time: 08 43 Solar Zenith 45.0° AOD 0.135 Algeria

August 22 2019 Planetscope-0 UTC time: 09 56

Solar Zenith 33.1° AOD 0.104

Algeria

Deep Learning classification of Planetscope two-date 3 m burned area

based on Landsat training

Deep Learning classification of Planetscope two-date 3 m burned area based on Landsat training

After relative normalization of Planetscope data

 \bigcirc

,

White = burned

August 5 2019 Planetscope-0 UTC time: 06 53 Solar Zenith 50.7° AOD 0.080 Madagascar

August 6 2019 Planetscope-0 UTC time: 06 52 Solar Zenith 50.7° AOD 0.104 Madagascar

Deep Learning classification of Planetscope two-date 3 m burned area based on Landsat training White = burned !

Deep Learning classification of Planetscope two-date 3 m burned area based on Landsat training

After relative normalization of Planetscope data . . .

. White = k

White = burned

Summary

Good news

- New medium resolution burned area product for Africa developed to take advantage of freely available Sentinel-2 and Landsat-8 NASA HLS, to provide improved mapping of
 - small and spatially fragmented burns
 - low combustion completeness burns
 - ephemeral burns
- HLS V1.5 now a mature multi-sensor ARD

Ongoing research

- PLANET multi-date images can be used to validate 30m Sentinel-2 Landsat-8 burned area product
- Develop a semi-automated deep learning PLANET time series burned area mapping algorithm (under new NASA ACCESS program funding)
- Use results to validate the Sentinel-2 Landsat-8 30m burned area product for all of Africa
- Go Global primarily a compute and resource issue where are the missing small burns ? (under new NASA LCLUC program funding)