Long Term Land Data Record from AVHRR/MODIS/VIIRS

Eric Vermote

University of Maryland/ Dept of Geography and NASA/GSFC Code 922

Long Term Land Data Record Project

- Started in December of last year.
- Objective is to develop a coarse spatial resolution data set from AVHRR, MODIS and VIIRS for Land studies.
- Provides the link between AVHRR, MODIS and VIIRS.
- Team members:
 - NASA GSFC: Ed Masuoka, Nazmi Saleous, Jeff Privette, Jim Tucker, Jorge Pinzon.
 - UMD: Eric Vermote, David Roy, Steve Prince.
 - Collaborator: Chris Justice (UMD).

Data Sources

Proposed System

AVHRR data set

- AVHRR offers the longest record.
- Lacks onboard calibration.
- Limited set of spectral bands reduces the accuracy of atmospheric parameters retrieval and correction (water vapor and aerosols).
- Broad spectral bands lead to contamination by the atmosphere.
- Orbital drift leads to substantial variation in the solar geometry throughout the mission.

Significant Earth Science findings based on AVHRR

- Major science claims based on data
 - Phenology –lengthening snow-free season in arctic
 - Increased NPP in N America
 - Changing Fire frequencies
 - Land cover changes
- Widely-used information based on data
 - NDVI
 - NPP, agricultural yield
 - Phenology
 - Land cover NPP carbon sequestration
 - Burned area

Are the AVHRR observations adequate to justify these Earth Science conclusions?

What accuracy and precision in the AVHRR data is assumed by users when reporting "significance" of results?Any independent verification?

1. What are the data implications of the science conclusions?

1950 1955 1960 1965 1970 1975 1980 1985

Time series of peak NDVI derived from 8-km resolution AVHRR data from 1981 to 2001 (a) and SWI over the past 22-50 years (b) among bioclimate subzones. Dashed lines are linear regressions. The shaded area highlights the period of SWI covered by NDVI data

Significant \triangle NDVI over 21 years =0.056 0.0032 to 0.082 0.028

From: Jia, G.J., Epstein, H.E. and Walker, D.A., 2003. Greening of arctic Alaska, 1981–2001. GEOPHYSICAL RESEARCH LETTERS, VOL. 30, NO. 20, 2067, doi:10.1029/2003GL018268.

1. What are the data implications of the science conclusions?

Time series of peak NDVI based on 1km resolution **AVHRR** data among tundra vegetation types. **Error bars** represent plus/minus standard error.

Significant Δ NDVI = 0.061/11yrs

From: Jia, G.J., Epstein, H.E. and Walker, D.A., 2003. Greening of arctic Alaska, 1981–2001. GEOPHYSICAL RESEARCH LETTERS, VOL. 30, NO. 20, 2067, doi:10.1029/2003GL018268.

Generating Improved AVHRR products

Goal to make the AVHRR data set temporally consistent and consistent with MODIS by using:

- Reliable and consistent calibration across the different NOAA platforms.
- Apply MODIS algorithms to AVHRR where possible, e.g.: the MODIS aerosol retrieval and atmospheric correction approach.
- BRDF correction to address differences in the solar and viewing geometry.
- Coincident AVHRR/MODIS to evaluate and improve AVHRR products and quantify accuracy.

Consistent AVHRR calibration across platforms

- Use the Vermote/Kaufman calibration approach (1995)

Use MODIS to validate N16 calibration / Approach

- Select a stable calibration site.
- Characterize the reflectance spectral variation using MODIS narrow bands.
- Use 2 years of data to characterize the site BRDF using the simple linear kernel model used in the MODIS BRDF product.
 - Rigorous cloud screening is applied to the data.
 - Exclude observations within 15deg of backscattering conditions to avoid the hot spot.
 - Exclude off-nadir observations (viewing zenith angle > 50 deg) where the pixel size variation makes it difficult to select coincident observations.

Evaluating AVHRR calibration using MODIS

Days since 1/1/2000

Use of MODIS to improve AVHRR atmospheric corrections

Use coincident MODIS/AVHRR data to develop an approach for water vapor retrieval from AVHRR.

MODIS atmospheric correction, theoretical uncertainties estimates

- Calibration: 2% absolute, 1% band to band
- Pressure: +/- 10mb
- Water vapor 0.2g/cm² (Differential absorption technique)
- Ozone 20 Dobsons (EP-TOMS)
- SWIR/ VIS relationship: +/- 0.005 reflectance unit
- Aerosol type: Smoke low/high absorption, Urban polluted

Top of the atmosphere simulations

Parameter	Values			
Geometrical conditions	Solar Zenith	View Zenith	Relative Azimuth	Case Name
	30	0	0	A
	30	30	0	В
	30	30	180	С
	30	60	0	D
	30	60	180	Е
	60	0	0	F
	60	30	0	G
	60	30	180	Н
	60	60	0	I
	60	60	180	J
Aerosol optical depth	0.05 (clear)) 0.30 (a	verage) 0.	50 (high)
Aerosol model	urban clea absorption smoke high	n,urban 1 absorp	n polluted, ption	smoke low
Water vapor content [g/cm2]	1.0, 3.0 and	1 5.0 un	ncertaintie	s +/-0.2
Ozone content [cm.atm]	0.25, 0.3, 0).35 unc	ertainties	+/- 0.02
Pressure [mb]	1013mb, 9 +/-10mb	930mb,	845mb u	ncertainties

MODIS surface reflectance error budget: Calibration uncertainties

					minimu	um er	ror						
	Belterra				Skuku	ıza				Sevill	eta		
	Clear	Average	Hazy			Clear	Average	Hazy			Clear	Average	Hazy
λ [nm]	ρ x10000	Δρx10000		λ [nm]	p x10000		Δρ x1000	0	λ [nm]	ρ x10000		Δρ <mark>x1000</mark>	0
470	120 0001c	0000c	0001e	470	400	0003a	0003c	0003g	470	700	0005b	0006e	0006g
550	375 0005c	0003j	0001j	550	636	0004a	0002e	0001e	550	1246	0011j	0006j	0005g
645	240 0002c	0003c	0005c	645	800	0006a	0007a	0006a	645	1400	0016e	0011b	0003g
870	2931 0029a	0030a	0030c	870	2226	0019a	0019a	0019a	870	2324	0015b	0011b	0010b
1240	3083 0029f	0030c	0030c	1240	2880	0028a	0027b	0028a	1240	2929	0025b	0023b	0021b
1650	1591 0015c	0016c	0016c	1650	2483	0023a	0023b	0023a	1650	3085	0027b	0026b	0026b
2130	480 0007c	0005c	0006c	2130	1600	0013a	0014a	0013a	2130	2800	0024b	0024b	0023b
NDV	Ix1000	ANDVI x100	00	NDVIx100	0	Δ	NDVI x10	000	NDVIx10	00	Δ	NDVI x10	00
8	49 0001c	0002c	0003c	471		0000a	0000a	0000a	248		0002b	0001a	0000a

						maxim	um er	ror						
	Bel	lterra	1			Skuku	ıza				Sevill	eta		
	С	lear	Average	Hazy			Clear	Average	e Hazy			Clear	Average	e Hazy
λ [nm]	ρ x10000		Δρx10000		λ [nm]	ρ x10000		Δρx1000	00	λ [nm]	p x10000		Δρx1000	00
470	120 0	008j	0017i	0023d	470	400	0009j	0017i	0016d	470	700	0010f	0018i	0017c
550	375 0	009i	0020i	0034i	550	636	0005b	0013i	0022d	550	1246	0020c	0018i	0023d
645	240 0	011i	0036i	0065i	645	800	0013i	0028i	0050i	645	1400	0024c	0022i	0029i
870	2931 0	038i	0057i	0081i	870	2226	0026i	0042i	0068i	870	2324	0026f	0022f	0035i
1240	3083-0	040i	0052i	0072i	1240	2880	0038i	0043i	0059i	1240	2929	0040f	0036f	0044j
1650	1591 0	036i	0045i	0070i	1650	2483	0038i	0038i	0051i	1650	3085	0044f	0039f	0048j
2130	480 0	038i	0040i	0065i	2130	1600	0037i	0031i	0043i	2130	2800	0040f	0038j	0049j
NDV	lx1000	4	ANDVI x100	0	NDVIx100	0	Δ	NDVI x1	000	NDVIx100	0	Δ	NDVI x1	000
8	349 00	006i	0019i	0034i	471		0003j	0007i	0013i	248		0003a	0003i	0003e

						average	error							
	Be	Iterra				Skukuz	a				Sevillet	a		
	C	Clear Av	erage H	lazy		С	lear Av	erage Ha	azy		C	lear Av	erage H	azy
λ [nm]	ρ x10000	Δρ	x10000		λ [nm] ρ	x10000	Δρ	10000		λ [nm] ρ	x10000	Δρ	(10000	
470	120	3	4	8	470	400	4	6	9	470	700	7	9	9
550	375	6	8	11	550	636	4	5	7	550	1246	15	12	11
645	240	5	10	18	645	800	8	11	15	645	1400	18	14	13
870	2931	30	34	40	870	2226	21	23	28	870	2324	19	16	17
1240	3083	32	34	39	1240	2880	30	30	34	1240	2929	30	28	29
1650	1591	21	22	28	1650	2483	27	26	29	1650	3085	33	32	32
2130	480	15	13	20	2130	1600	19	18	21	2130	2800	29	29	29
NDV	lx1000	ΔND	VI x1000		NDVIx1000		ΔND	/I x1000		NDVIx1000		ΔND	VI x1000	
8	349	2	5	9	471		1	1	2	248		2	1	1

MODIS surface reflectance error budget: Pressure,Ozone,Water Vapor

					pre	ssure ave	erage e	rror						
	B	elterra				Skul	kuza				Se	evilleta		
	C	Clear Ave	rage H	azy		C	Clear Av	erage Ha	zy			Clear A	verage H	azy
λ [nm] ρ	x10000	Δρχ	10000	, i	λ [nm]	ρ x10000	Δρ	x10000		λ [nm]	ρ x10000	Δ	px10000	Ĩ
470	120	0	0	0	470	400	0	0	0	470	700	1	0	0
550	375	2	1	1	550	636	0	0	0	550	1246	1	1	1
645	240	3	3	3	645	800	1	1	1	645	1400	1	1	0
870	2931	1	1	1	870	2226	2	1	1	870	2324	1	1	1
1240	3083	1	1	1	1240	2880	0	0	0	1240	2929	0	0	0
1650	1591	2	2	2	1650	2483	1	1	1	1650	3085	1	0	1
2130	480	2	2	2	2130	1600	1	1	1	2130	2800	2	1	1
NDVb	k1000	∆ND\	/I x1000		NDVIx	1000	AND	VI x1000		NDV	′lx1000	ΔN	DVI x1000	
84	19	3	3	2	47	1	0	1	0	2	248	0	0	0

					02	zone ave	erage e	error						
		Belterr	а			Ski	ukuza				S	evilleta		
		Clear	Average	Hazy			Clear	Average H	azy			Clear	Average H	lazy
λ [nm]	ρ x10000		Δρx10000		λ [nm]	ρ x10000	2	Δρx10000		λ [nm]	ρ x10000	2	Δρx10000	
470	120	0	0	0	470	400	0	0	0	470	700	0	0	0
550	375	6	6	6	550	636	5	5	5	550	1246	6	6	7
645	240	3	3	3	645	800	4	4	3	645	1400	4	4	4
870	2931	3	3	3	870	2226	7	7	7	870	2324	11	11	11
1240	3083	2	2	2	1240	2880	3	3	3	1240	2929	5	5	5
1650	1591	3	3	3	1650	2483	3	3	3	1650	3085	4	4	4
2130	480	3	3	3	2130	1600	4	4	4	2130	2800	3	3	3
ND\	/lx1000	L	NDVI x100	00	NDVIX	(1000	Δ١	VDVI x1000)	ND\	′lx1000	Δ١	NDVI x100	5
	849	2	2	2	47	'1	1	1	1	1	248	1	1	1

					wate	r vapor a	averag	ge error						
		Belterr	a			Sk	ukuza				ę	Sevilleta		
		Clear	Average	Hazy			Clear	Average H	łazy			Clear A	verage H	lazy
λ [nm]	ρ x10000		Δρ x10000)	λ [nm]	ρ x10000		Δρ x10000		λ [nm]	p x10000	$\Delta_{\rm I}$	p x10000	
470	120	1	(0 0	470	400	3	1	1	470	700	5	3	2
550	375	1	(0 0	550	636	4	2	2	550	1246	8	5	3
645	240	2	1	l 1	645	800	7	4	3	645	1400	12	8	6
870	2931	5	2	4 3	870	2226	6	4	3	870	2324	10	6	4
1240	3083	2	2	2 1	1240	2880	3	2	1	1240	2929	4	2	2
1650	1591	0	(0 0	1650	2483	1	0	C	1650	3085	2	1	0
2130	480	4	2	2 2	2130	1600	13	8	6	2130	2800	21	13	10
ND	VIx1000	L	NDVI x10	00	NDVIX	(1000	Δ	NDVI x1000)	NDV	lx1000	ΔN	DVI x1000)
	849	2	1	1	47	'1	2	2	1	2	248	2	2	1

MODIS surface reflectance error budget: Empirical relationship SWIR-Visible

					empi	rical relat	ionship	o average e	rror					
		Belterra					Skukuza	l				Sevilleta	I	
		Clear	Average	Hazy			Clear	Average	Hazy			Clear	Average	Hazy
λ [nm]	ρ x10000		Δρx10000		λ [nm]	ρ x10000		Δρx10000		λ [nm]	ρ x10000		Δρx10000	
470	120	52	51	51	470	400	52	51	51	470	700	51	51	51
550	375	49	52	56	550	636	52	58	62	550	1246	47	59	63
645	240	52	57	58	645	800	52	60	62	645	1400	52	65	68
870	2931	10	9	10	870	2226	21	25	27	870	2324	29	37	39
1240	3083	11	6	6	1240	2880	16	10	10	1240	2929	29	17	18
1650	1591	17	13	13	1650	2483	19	10	10	1650	3085	41	13	12
2130	480	37	17	16	2130	1600	31	13	14	2130	2800	42	11	10
NDVI	x1000		ANDVI x1000)	NDVb	<1000		ΔNDVI x1000		NDVIx	1000		Δ NDVI x1000)
8	49	30	33	34	47	71	22	25	25	24	8	11	14	15

MODIS surface reflectance error budget: Aerosol model

			Aeroso	l mode	el error :	Smoke	Low	Absorptio	n vs	Urban (Clean			
		Belterr	a			SI	kukuza	1				Seville	ta	
		Clear	Average	Hazy			Clear	Average	Hazy			Clear	Average	Hazy
λ [nm]	ρ x10000		Δρx10000		λ [nm]	ρ x10000		Δρx10000		λ [nm] ρ	x10000		Δρx10000	
470	120	2	4	8	470	400	1	5	9	470	700	1	8	10
550	375	4	9	19	550	636	2	2	10	550	1246	4	13	26
645	240	5	7	21	645	800	5	6	17	645	1400	6	10	17
870	2931	12	75	123	870	2226	10	50	86	870	2324	10	41	67
1240	3083	10	52	91	1240	2880	10	46	82	1240	2929	9	42	73
1650	1591	10	28	53	1650	2483	9	31	57	1650	3085	10	36	60
2130	480	13	16	30	2130	1600	11	17	32	2130	2800	10	25	40
ND\	/lx1000	Z	ANDVI x100	0	NDVIx	1000	Z	100 NDVI x100	0	NDVI	x1000	Δ	NDVI x100	0
	849	2	3	15	47	1	1	5	11	24	48	0	5	8

			Ae	rosol n	nodel eri	ror : Urba	an pol	lluted vs	Urbar	n Clear	า			
		Belterr	а			Sk	ukuza					Seville	ta	
		Clear	Average	Hazy			Clear	Average	Hazy			Clear	Average	Hazy
λ [nm]	ρ x10000		Δρ x10000		λ [nm]	ρ x10000		Δρ x10000		λ [nm] ρ	x10000		Δρ x10000	
470	120	1	6	8	470	400	1	8	13	470	700	1	15	22
550	375	3	17	29	550	636	2	8	13	550	1246	9	41	60
645	240	3	15	28	645	800	4	15	20	645	1400	10	41	56
870	2931	27	166	272	870	2226	20	105	172	870	2324	20	94	153
1240	3083	21	118	194	1240	2880	19	102	168	1240	2929	20	97	158
1650	1591	11	42	73	1650	2483	14	62	102	1650	3085	17	82	131
2130	480	7	17	35	2130	1600	8	25	44	2130	2800	13	52	85
ND	VIx1000	Z	NDVI x100	0	NDVIx	(1000	Δ	NDVI x100	0	NDVI	x1000	Δ	NDVI x100	0
	849	2	13	24	47	'1	1	17	28	2	48	0	8	14

Aerosol model error : Smoke High Absorption vs Urban Clean

		Belterr	a			Sk	ukuza				5	Sevillet	a	
		Clear	Average	Hazy			Clear	Average	Hazy			Clear	Average	Hazy
λ [nm]	ρ x10000		Δρx10000		λ [nm]	ρ x10000		Δρ x10000		λ [nm] ρ	x10000		Δρ <mark>x10000</mark>	
470	120	2	8	12	470	400	2	13	18	470	700	2	20	31
550	375	5	22	37	550	636	3	11	17	550	1246	12	52	83
645	240	5	13	26	645	800	6	19	26	645	1400	13	48	77
870	2931	33	203	333	870	2226	24	136	220	870	2324	24	121	200
1240	3083	25	145	239	1240	2880	23	130	212	1240	2929	24	122	203
1650	1591	15	67	109	1650	2483	18	87	140	1650	3085	21	104	172
2130	480	11	24	35	2130	1600	12	40	63	2130	2800	16	72	118
ND	VIx1000		NDVI x100	0	NDVb	(1000	Δ	NDVI x100)0	NDVb	(1000	Δ	NDVI x100	00
	849	2	10	20	47	'1	1	16	29	24	8	0	8	15

MODIS surface reflectance error budget: Summary

						SUMN	IARY	,						
		Belterr	a			Sk	ukuza					Seville	ta	
		Clear	Average	Hazy			Clear	Average	Hazy			Clear	Average	Hazy
λ [nm]	ρ x10000		Δρ x10000		λ [nm]	ρ x10000		Δρ x10000		λ [nm] ρ	x10000		Δρ x10000)
470	120	52	51	52	470	400	52	52	53	470	700	51	53	55
550	375	49	55	64	550	636	52	58	64	550	1246	51	70	85
645	240	52	59	65	645	800	53	62	67	645	1400	57	74	85
870	2931	40	152	246	870	2226	35	103	164	870	2324	41	95	146
1240	3083	38	110	179	1240	2880	38	97	158	1240	2929	45	93	148
1650	1591	29	52	84	1650	2483	35	66	104	1650	3085	55	81	125
2130	480	41	28	42	2130	1600	40	36	53	2130	2800	56	60	87
ND	VIx1000	L	NDVI x100	0	NDVIx	1000	Δ	NDVI x100)0	NDVI	x1000	Δ	NDVI x100	00
	849	30	34	40	47	1	22	28	33	24	48	11	15	19

AVHRR Pathfinder atmospheric correction, theoretical uncertainties estimates

- Calibration: 10% absolute, 4% band to band
- Water vapor 0.7g/cm² (NCEP or none)
- Ozone 30 Dobsons (London climatology)
- No aerosol correction

AVHRR Pathfinder Error budget summary														
belterra	С	lear	avg	hazy	skukuza		clear	avg	hazy			clear	avg	hazy
640	448	56	506	803	640	858	90	457	727	640	1427	149	396	628
846	2367	200	217	338	846	1964	164	225	370	846	2166	179	212	349
3750	448	20	26	31	3750	858	42	44	46	3750	1427	73	74	74
NDVI	682	33	195	266	NDVI	392	42	124	168	NDVI	206	46	68	90

AVHRR Long Term Data Record: Atmospheric correction, theoretical uncertainties estimates

- Calibration: 4% absolute, 2% band to band
- Water vapor 0.3g/cm² (Split window band 4-5)
- Ozone 10 Dobsons (EP-TOMS)
- Aerosol correction based on 3.75mic assumed (0.01 error on the empirical relationship)

LTDR planned : improved calibration,ozone,water vapor, aerosol correction														
belterra	(clear	avg	hazy	skukuza		clear	avg	hazy	sevilleta		clear	avg	hazy
640	448	101	100	100	640	858	101	101	100	640	1427	106	104	104
846	2367	85	133	196	846	1964	75	101	141	846	2166	81	97	132
3750	448	14	15	25	3750	858	20	22	26	3750	1427	30	33	37
NDVI	682	56	58	64	NDVI	392	43	47	54	NDVI	206	30	33	38

Production and Distribution

- Use a MODAPS-like environment for production.
- Benefit from the MODIS production experience.
- -Data products will be kept online and distributed by ftp and through a web page.
- -Make intermediate data sets available for evaluators.
- -Transition the data sets to the DAAC later in the project when the datasets are validated.

Quality Assessment

Known Issues Tracking Time series analysis **Global Browse** Known issues in MOD09 product (Surface reflectance) Mean Daily Surface Reflectance Savanna (N ~ 173,000) and Desert (N ~ 18,000) Land Cover Related PGEs: PGE11 (HODI9_L2), PGE13 (MODI9GQK, MODI9GHK, NODI9GST), PGE21 (HODI9A1) The inferentian listed on this sim is for the segress purpose of communication with the MODES Land (MODEAND) Science Team and related parties. Northwestern Africa 9.6 Summary Color Key Gare pushing Gara closed Gara respond QA arts Case number Last uplate Status Desc <u>B_M0204_0100</u> 0207011 Rev. Salar edges of 1205/000 affers M0200-6as DR_MODOR_01040 12/2001 Note New compatting signation related stud DR. MODOR -01220 01:00011 Note Descent appropriate of 200m and 900m 1.18-bits propagated into 3 3 Di MUDIO 91100 91/5091 Note Gradialie cloud nationation propagated into MODIO QA bet TE_DECREP_UNDE 01/05/01 Now Forging elseword in land 7 of NEDDORENT and NEDODRENT and NEDDORENT and NEDODRENT and NEDDORENT and NEDDORENT and NEDDORENT and NEDDORENT and NEDODRENT and NEDODRENT AND NEDODRENT AND NEDODRENT AND NEDODRENT AND NEDODRENT AND NEDDORENT AND NEDODRENT AND NEDDORENT AND NEDDORENT AND NEDODRENT AND NEDDORENT AND NEDODRENT AND NEDDORENT SD_MODEL_MODEL 11/20400 New Revisional stages in band 5, 6, and 7 own oceas. SD_MCORP_HISSI 11/2840 New Increase to be DR. MUDOW 00312 11/2020 Note Accord constitutionally the derived served product (MUDOS) is not a ET_MODes_00007 11/02/00 Closef Armong ET_MIDD0_00200 11/02/00 Nos Attelets based IN_MIDD0_00200 20/17/00 Nos L3G papapapa 10_MOD21_01255 12/2040 Closed Desild slow for QA metadara QAFERI SD_MCODD_01111 ID0000 Classif Invalid value for QA Summar SD_MCODD_01111 96/29/00 Note Full values in Lower Layers of DR. MODOS 00100 09/11/00 Climet Clashidadrer MODERA1 compositing tases DR. MIDDR. 00174 00/2250 Closed Relative Automata Angle in MCDD9A1 in ID_MODE2_8121 06/21/90 Note Negative affectance values sees in band2 ED_MODIV_MILLS 12/20/90 Clesel strapes in MODIVERT vies due to a IN MODES (81-PA 050550 Nets MODES had 6 feet feterion filled 20_00000_001473 00/0000 Rose MCDDD Start 7 and Amount Start 28_00000_00140 00/0000 Rose MCDDD Start 7 and Amount Start 28_00000_00140 00/0000 Rose Split Start 7 and Amount Start CC_MID00_00100 B555000 Boys Edd of size signaficantly/brighten than summaling pixels. Ed_MID00_00102 4555200 Proding Pill values sing monthle to band to MID00_12 EC_MID00_00104 100000 Closed MOD00 values to band to MID00_12 July Aug Sect Nov Month

Community Outreach

- Advisory panel: will include members from different disciplines and agencies (NOAA NESDIS, USDA, CRSC, ...).

-Workshops/Sessions held throughout the project to refine requirements and provide feedback on products.

- Publish team's evaluation of existing and intermediate datasets on the web and request input and comments from users.

-Participation in scientific conferences and peer reviewed publications.

Summary

- The creation of a Long Term Land Surface Data record with documented and comparable accuracy across instruments is feasible.
- The long term trend observed with precursor AVHRR datasets needs to be verified.
- A beta version of the AVHRR data set will become available for evaluation in June 2005.
- The user community involved in the definition and evaluation of the data sets (Pathfinder approach).
- Incremental release of the products (Beta => Provisional => Validated) as they are generated (MODIS approach).