Land Use Change Around Protected Areas and Consequences for Biodiversity

P.I.s: Andrew Hansen and Ruth Defries

Site P.I.s: Emilio Moran, Robin Reid, Billie Turner, Lisa Curran, Jack Liu

Students/R.A.s: Jan Dempewolf, Linda Phillips, Heather Rustigian, Konrad Wessels

Site Collaborators: Kenya - M. Said, S. Serneels Tanzania - G. Hopcraft, S. Mduma Mexico – S. Calme, H. Vester, C. Pozo U.S. - M. Cougenhour, S. Creel, P. Hernandez

Funding: NASA Land Cover Land Use Change Program

The Concept of Nature Reserves

Thomas Moran, Grand Gargen of the Sidharonse, 1872, Department of the Section Manum, Washington, D.G.

Thomas Moran Hayden Expedition 1871

By removing humans, natural ecosystems were expected to continue to maintain ecological processes and native species.

Loss of Reserve Function

Ecological Processes –

•Climate

•Disturbance

•Nutrients

Biodiversity

Invasive species

•Extinction of native species

- 11 of 13 western US national parks have lost 5-21% of original large mammal species (Parks and Harcourt 2002)

Land Use Intensification Around Reserves

Boundary of Ngorgora Conservation Area

What are the consequences of land use change around reserves for biodiversity within reserves?

Nature reserves are often connected to the surrounding landscape by movements of materials, disturbance, and organisms

Land use intensification outside of nature reserves may disrupt these flows and alter ecological processes and biodiversity within reserves.

Larson's Conceptual Model of Nature Preserves

Study Objectives

Quantify rates and types of land use change around reserves.

Assess effects on biodiversity within reserves.

- •Habitat area
- •Species extinction rates based on habitat area
- Individual species abundances
- •Biodiversity hotspots

Evaluate MODIS data as a means of regional-scale land cover monitoring.

General Products

Elucidate the ecological mechanisms by which land use outside of reserves influences biodiversity within reserves.

Develop criteria for regional-scale management to maintain reserve function and biodiversity.

Study Regions

Western Hemisphere Eastern Hemisphere Yellowstone: Temperate/boreal Coniferous-wet/dry Mountains Wolong: Broadleaf-wet/dry Subtropical **Mountains** Yucutan: Subtropical Broadleaf-wet/dry Flat Indonesia: Broadleaf-wet Tropical Mountains Broadleaf-wet Santarem: Tropical Flat

> Africa East Africa: Subtropical Savanna Mountains

Maasai East Africa: Land Use Change

Maasai East Africa: Nomadic Pasturalism

Maasai East Africa: Land Use Change

Maasai East Africa: Loss of Wildland Habitats

Land Cover

Site	Total Area	Total %	% Unprotected	% Remaining Habitat
	(km²)	Converted	Lands Converted	Found Outside Reserves
Maasailand	193,405	45	53	66

Greater Yellowstone

Land Cover/Use Change in GYE: 1975-1995

GYE Rural Residential Development

Rural Homes

Population has increased55% 1975-95

Rural homes increased 108% 1975-99

Data Source County tax assessor records validated against aerial photographs

Mayan Forest

Mayan Forest:Land Uses

Primary Forest

ermanent Small-Pl Agriculture

Swidden Agriculture

Industrial Agriculture

Mayan Forest: Land Cover/Use Change

Land Cover Classes	1969 ¹	1987 ²	1997 ²
Primary Forest	11,042	10,356	10,068
Secondary Forest	111	634	845
Agriculture and Pasture	228	391	468

¹ Based on aerial photographs covering 63% of the study region or 11,318 km².
² Based on TM Landsat imagery for same area as photographs.

(After Turner et al., 2001)

Mayan Forest: Loss of Wildland Habitats

Site	Total Area (km ²⁾	Total % Converted	% Unprotected lands Converted	% Remaining Habitat Found Outside Reserves
Mayan Forest	120.109	30	40	53

Land Use Change Around 200 Reserves in the Tropics

Locations of forest loss from 1980 – 2000 estimated from AVHRR

70% have experienced some decline in forest habitat in the surrounding 50km within the past ~20 yrs.

Basis: Larger habitat may support larger population sizes, reducing the likelihood of extinction.

Species Area Effects: Habitats Fragments

Post-isolation

Brooks et al. 1999

Species Area Effects: Habitats Fragments

Implication: Nature reserves will loose species as the natural habitats around them are reduced in size

Pre-isolation

Post-isolation

Brooks et al. 1999

Extinction Rates: Methods

- 1. Estimate current area of wildland habitats.
- 2. Determine the number of bird and mammal species known to be present and breeding in each region from range maps.
- 3. Estimated species richness based on ratio of remaining to original area (entire study area) of natural habitat based on Brooks et al. 1999:

S_n = S_o (A_n/A_o)^z New species richness=original species richness (new area/original area)^{.25}

4. Validated our results against the number of threatened species (GYE)

Species Area Effect: Results

Predicted Extinction Rates for Birds and Mammals

•9-14% of species in these greater ecosystems are predicted to go extinct based on habitat loss to date.

•If all unprotected wildlands are converted, 9-35% of species are predicted to go extinct.

Species Abundance Data

Region	Taxonomic Group	Source	Resolution	Time Period
East Africa	Large mammal abundance by species	Kenyan and Tanzanian Govmts.	5 km	1977-99
GYE	Bird abundance by species	Breeding Bird Survey	50-km transects	1968-2002
Mayan Forest	Butterflies Birds Herptiles Trees	ECOSUR	Various	Various

Species Abundance/Hotspots Methods

Obtain data from field surveys of species abundances.

Develop statistical relationship with biophysical and land use predictors.

Use statistical relationship to extrapolate species abundance over the landscape.

Analyze spatial distribution of species abundance to prioritize conservation.

Maasai Mara Greater Ecosystem

Species Abundances

Thompson's Gazelle Population Trends

Large Mammal Species Richness Trends

<u>Similar Results</u> wildebeest, kongoni, impala, Thompson's gazelle, buffalo, warthog, waterbuck

Annual Precipitation

Great Maasai Mara Ecosystem: Large Mammal Population Trends

13 Species Analyzed

3 species and species richness maintained in reserve but declined outside reserve.

8 species declined both inside and outside reserve.

1 species did not change across the study area (elephant)

1 species increased outside reserve (ostrich)

Predicted Bird Hotspots

Places where bird species richness and abundance are >60% of maximum

Hotspots cover 6.4% of area

Bird Hotspots and Rural Homes

density data

Percent of hotspots on: Private land: 41% National parks: 12.3%

Ecological Mechanisms

Mechanism	Туре		
Change in effective size of reserve	Species Area Effect		
	Minimum Dynamic Area		
	Trophic Structure		
Changes in ecological flows into	Disturbance initiation and runout		
and out of reserve	zones		
	Placement in watershed or airshed		
Loss of crucial habitat outside of	Ephemeral habitats		
reserve	Dispersal or migration habitats		
	Population source sink habitats		
Increased exposure to human	Poaching		
activity at reserve edge	Displacement		
	Exotics/disease		

Is MODIS data effective at the regional scale to identify land cover and land cover change?

around Tapajós National Forest,

Brazil.

Is MODIS data effective at the regional scale to identify land cover and land cover change?

Yes.

•MODIS is effective for monitoring land cover (except for small patches).

•MODIS also promising for phenology and fire.

•With ancillary data (human census, settlements, climate, etc), satellite-based monitoring can be highly effective.

Regional Management

Criteria for Regional Management

Mechanism	Туре	Design Criteria
Change in	Species Area Effect	Maximize area of
effective size	Minimum Dynamic Area	functional
of reserve	Trophic Structure	habitats
Changes in	Disturbance initiation and	Identify and
ecological	runout zones	maintain
flows into and	Placement in watershed or	ecological process
out of reserve	airshed	zones
Loss of crucial	Ephemeral habitats	Maintain key
habitat outside	Dispersal or migration habitats	migration and
of reserve	Population source sink habitats	source habitats
Increased exposure to human activity at reserve edge	Poaching Displacement Exotics/disease	Manage human proximity and edge effects

Criteria for Regional Management

Areas predicted to have high avian richness are also the same areas receiving the most pressure from human land use: rural homes were disproportionately located close to avian hotspots.

Yellowstone National Park

Within areas of high avian biodiversity, those places that are currently undeveloped but have high future development potential should be considered high priorities for future conservation efforts.

Greater Yellowstone Area boundary County boundaries Yellowstone National Park

Conclusions

Land use is intensifying around many of the world's nature reserves.

Loss of habitat area around reserves is predicted to be associated with the extinction of 5-14% of the bird and mammal species in the three study regions.

Several East African mammal species have declined substantially in and around a reserve near under land use intensification.

Hotspots for biodiversity and intense human land use often overlap in the same small portion of the landscape.

Knowledge of the ecological mechanisms linking land use and biodiversity provides a basis for regional management for sustainability.

Future Growth Scenario – Sustain Conservation Values

Land Use Types and Ecological Mechanisms

Type of land use change	Effective reserve size	Ecological Process zones/flows	Crucial Habitats	Edge Effects
Resource Extraction:				
Logging	X	X	X	
Mining		X	x	
Poaching				X
Food production:				
Subsistence farming				X
Small-scale farming	X	X	X	X
Large-scale	X	x	X	X
commercial farming				
Recreation:				
Tourism				X
Infrastructure:				
Roads/other transport			x	X
Dams		X	X	
Residential/commercial:				
Settlements				X
Urban/suburban			X	X