Agriculture and the Transformation of Planet Earth

NASA IDS Project University of Wisconsin, Madison

Year I Status Report

Jon Foley (PI), Chris Kucharik, Mike Coe, Carol Barford and Navin Ramankutty

Massive Land Cover Change

extensive land use

~18 million km² in cultivation
 ~34 million km² in pastures
 ~3 million km² in urban areas

significant impact cleared ~33% of the planet's land surface use ~40% of global photosynthesis

Source: Foley et al., 2003

Massive Water Use

extensive water use

annual use > volume of Lake Huron

using ~50% of "available" supply
 70% for <u>agriculture</u>, 20% for industry, 10% for domestic use

significant impacts
 declining water supply, quality
 increased water stress

Food, Water

Carbon, Climate

Objective #1

Documenting Global Patterns of Agricultural Land Use and Land Cover

Satellite Data

MODIS landcover classes (BU) MODIS continuous fields (UMD)

Water Bodies Evergreen Needleleaf Forest Evergreen Broadleaf Forest Deciduous Needleleaf Forest Deciduous Broadleaf Forest Mixed Forests Closed Shrublands

BU MODIS Landcover

Open Shrublands Open Shrublands Woody Savannas Savannas Grasslands Permanent Wetlands Croplands Urban and Built-up Cropland/Natural Vegetation Mosaic Snow and Ice Barren and Sparsely Vegetated Non-agricultural mask

Census Data

sage

Croplands and Pastures (2000)

Global Data: Modern, Historical

Individual Crop Areas, Yields

Center for Sustainability and the Global Environment (SAGE) University of Wisconsin, Madison

Preliminary Data in Leff et al. 2003; updated by Monfreda et al., in prep. 10

Agricultural Inputs

data for N/P/K fertilizers irrigation **P-fertilizer** application rate extent, amounts (kg/ha/yr) >30 Spatially Disaggregated **b**0N 0.0 60N BON 0 30S 60S 90S 180 30E 90E 150E 180 150W 120W 90W 60W 30W 60E 120E log10(mm/year) Center for Sustainability and the Global Er University of Wisconsin, Madison Source: J. Helkowski, M.S. Thesis, University of Wisconsin, 2004

Objective #2

Understanding Changes in Agroecosystems

Mississippi Basin

Where Are We?

Mississippi Basin

3rd largest basin in world 3.2 million sq km 48% of continental U.S.

important region
 home to ~70 million people
 ~\$100 billion / yr agricultural economy

extensively used ~35% cropland ~2000 large dams

sage

Atmosphere-Ecosystems-Rivers

Conceptual and Modeling Framework

Land Use / Land Cover

Describing Management: Cropping, Fertilizers

Center for Sustainability and the Global Environment (SAGE) University of Wisconsin, Madison

0.05 - 0.1 0.1 - 0.3 0.3 - 0.5

0.5 - 0.7 0.7 - 1

adapted from Donner, in press; Leff et al., submitted; Ramankutty et al., in prep

Application rate (kg ha⁻¹ yr⁻¹)

Crop Yields Effects of Climatic Variability

sage

Center for Sustainability and the Global Environment (SAGE) University of Wisconsin, Madison

16

Crop Yields

Effects of Decadal Climatic Variability

Change in Planting Simulated Optimal Planting Date 1990s-1960s

Center for Sustainability and the Global Environment (SAGE) University of Wisconsin, Madison

17

Crop Yields

Effects of Decadal Climatic Variability

Objective #3

Understanding Changes in Freshwater Resources

Mississippi Basin

Hydrology of Land and Rivers Effects of Climatic Variability

sage

Changes in Water Flow

Sensitivity to Land Cover Change

what happens to evapotranspiration? what happens to runoff? what happens to groundwater recharge?

a) Potential Vegetation

Polar Desert/Rock/Ice Desert Tundra Open Shrubland Dense Shrubland Grassland/Steppe Savanna Mixed Forest/Wood Boreal Dec Forest/Wood Temp Dec Forest/Wood Temp Evg Con Forest/Wood Temp Evg Broad Forest/Wood Trop Dec Forest/Wood Trop Dec Forest/Wood

Water

University of Wisconsin, Madison

Twine et al., 2004

22

Nitrogen and Water Quality A"Good" Thing, Right?

Nitrate Too Much of a Good Thing...

Impacts of aquatic N loading

Coastal environment

- destruction of fisheries, change in community structure

Human health

- high NO₃ levels in groundwater, toxic algal blooms

Atmosphere

- increased emission of N₂O, a powerful greenhouse gas

Economy

- hypoxia damages fisheries and tourism (eg. Black sea)
- nitrate represents a loss from agriculture and industry

Nitrate in the Mississippi Pinning Down "Hot Spots"

Center for Sustainability and the Global Environment (SAGE) University of Wisconsin, Madison

kg ha⁻¹yr

80

60

20

Nitrate - Yield versus Water

A Potential Policy Action

Objective #4

Exploring Global Responses to Agricultural Change

Evaluating Changes in Global Ecosystem Services

Future Climate Change? changes in agricultural production?

Source: Ramankutty et al., 2002

Water Resources Effects of Water Use, Climate

(average climate)

All Water Withdrawals: Agriculture, Domestic, Industry

log10(mm/year)

Water Withdrawals / Renewable Water Supply Water Withdrawals / Renewable Water Supply (driest ~10% of years)

Source: J. Helkowski, M.S. Thesis, University of Wisconsin, 2004 Center for Sustainability and the Global Environment (SAGE) University of Wisconsin, Madison

32

Bottom Line

Big Questions

- In how are large regions changing from agriculture?
 - multiple dimensions
 - focus on human welfare
- changing ability to provide multiple <u>ecosystem</u> <u>goods and services</u>?
 - provide agricultural, forest goods
 - maintain water flows, water chemistry
 - store carbon, modulate regional climate
 - mitigate disease transmission

feedbacks to larger earth system?

