

Authors and Team: A Very Complex System

- Michael W. Binford (Geographer/Landscape and Aquatic Ecologist)
- Grenville Barnes (Land-Tenure/Cadastral Specialist)
- Henry Gholz (Terrestrial Ecosystem Ecologist)
- Scot Smith (Remote Sensing/GIS Specialist)

Objectives

- (1) to determine the links between changes in land ownership, land management, land cover change, and carbon storage patterns within the southeastern lower coastal plain region of the United States;
- (2) to determine the effects of land ownership patterns on the carbon storage and sequestration rates of a representative regional ecosystem at already established long-term intensive research sites.

Science Implications

- Regionalizing point measurements scaling from towers to landscapes (bottom-up not top-down).
- Measuring human activity as a factor driving land-cover/land-use change.
- Developing empirical models of biomass/carbon in land cover classes in a large physiographic region (~ecoregion).
- Developing estimates of C storage change based on extensive and intensive measurements of biomass and carbon exchange in several major land-cover classes.

Study Area

Figure 2. Physiographic provinces of the southeastern U.S.

Study Area

~15-km square

Landsat WRS 2 P17 R39

Using eddy covariance for estimating NEE

Figure 2. Landsat TM imagery from 27 March 1997. A. "True-color" image using bands 3, 2, and 1 for red, green, and blue. B. Interprete results of an unsupervised land-cover classification.

Industrial Forestry – Slash Pine

Vegetation Dynamics and Carbon Sequestration in North Florida

Landsat TM/ETM
5,4,3 = R,G,B
Composite
Alachua County
Study Site

Landscape Dynamics

Vegetation is Dynamic

Ownership is Dynamic

Management is Dynamic

Approaches to Linking Ecosystem Research with Satellite Data

- Land-cover classification, including age classes for plantation pine, linked to
 - Look-Up-Tables of Net Ecosystem Exchange measured by eddy-flux towers, and Total Ecosystem Biomass/C measured in many sites over many years.
 - LUT of C removal by Fire and Harvest
- Continuous field
 - Statistical relationships between RS data and C storage
 - Artificial Neural Network approaches to estimating C storage from RS data
- Ecosystem modeling (Biome-BGC) expressed spatially by forest age
 - Accounting for climate variation

Method

Land-Cover Change is Continuous

Land-cover From-To Analysis

Change Matrix 1998 - 1999 (after the great Waldo fire of 1998)										
		1999								Burned
	1998	1	2	3	4	5	6	7	Total	hectares
0-3 yr plantation_Clearcut	1	681	1042	1413	592	146	535	546	4955	147
4-8 yr plantation	2	291	2013	843	838	49	447	183	4666	363
8+ yr plantation	3	0	270	1756	122	0	269	1	2417	1296
Cypress and other wetlands	4	19	685	315	1533	5	201	52	2810	482
Agricultural crops	5	395	90	28	46	886	6	374	1825	11
Older/natural regenerated pine forest	6	4	406	743	198	0	538	10	1901	449
Urban (ignore)_road	7	170	348	14	187	98	31	649	1497	87
	Total	1560	4855	5112	3516	1185	2026	1815	20071	2835
						Total Unchanged =			8057	
						Percent Unchanged=			40	

Land-Cover – Carbon Dynamics: Linking Ecosystem Research with Satellite Data

Fire Effects

Age Classes	Biomass Removal (T ha-1)	std. Dev.
0-3	1.0	0.8
4-8	4.3	3.3
> 8	38.2	15.7

Positive values indicate net C uptake by the ecosystem, negative values indicate net C output from the system.

Total Landscape $C_{exc} = \Sigma$ (Class area * C_{exc} area⁻¹)

NEE estimates for age classes:	NEE (g C m-2 y-1)	NEE (T C ha-2 y-1)
Age Class		
0-3 yr plantation Clearcut	-850	-8.50
4-8 yr plantation	145	1.45
8+ yr plantation	575	5.75
Cypress and other wetlands	60.5	0.61
Agricultural crops	0	0.00
Older/natural regenerated pine forest	180	1.80
Urban (ignore)		
water (ignore)		

One Part

Regional Annual Carbon Budgets 1976-2000 (T landscape⁻¹)

Year	NEE	Fire	Harvest	Total C Exchange	Total C Exch	nange without harvest	
1976	10289		-5719	4570	10289		
1981	25306		-16164	9143	25306		
1982	14155		-16235	-2080	14155		
1985	26710	-295	-8043	18372	26415		
1986	13651		-17288	-3637	13651		
1987	6196		-22187	-15991	6196		
1988	256		-4299	-4043	256		
1989	11795		-11218	577	11795		
1990	7287		-15539	-8252	7287		
1991	-980		-24723	-25703	-980		
1992	17588		-9698	7890	17588		
1993	-2859	-148	-6300	-9307	-3007		
1994	15005		-5319	9686	15005		
1995	34243		-4440	29802	34243		
1996	25272		-2221	23050	25272		
1997	28950		-11066	17884	28950		
1998	-16332	-51187	-43379	-110898	-67519		
1999	-16332	-219	-343	-16894	-16552		
2000	-33028	-15568		-48596	-48596		
Average	8799		-12455	-6549	5250		
Total	167172	-67417	-224182	-124427	99755		

Vegetation Dynamics and Carbon Sequestration in North Florida

Total Carbon Exchange - Alachua Study Area

Continuous-Field C Estimates

Jan 1998

Total C = 3,799,200 T

Total C = 3,721,540 T

Jan 2000

T ha-1 75

Total Ecosystem Biomass (g m^2) = -1298.90 + 1287.41 * (SR) Total Ecosystem C = Total Ecosystem Biomass / 2 $R^2 = 0.88$

Climate Variation: Previous research showed that...

- Plantation pine growth is not affected by irrigation or impacted by water table depth under "average conditions"
- And that growth is primarily nutrient limited

So no further attention was placed on modeling interactions between C and H_2O

But A "100 year drought" occurred in 1999-2002, altering our modeling strategy

Mean NDVI time series (1972-2000), north Florida 15 x 15 km landscape

Developing a Spatio-Temporal Cadastral Database

Original Rectangular PLSS Subdivisions

Current Cadastral Parcels (2000)

Definition

Land Tenure

The social institution (rules, rights, restrictions) that controls the use and allocation of land and its associated resources

Cadastral Methods – Field Work

Extracting Cadastral Data from the Alachua County
Property Appraiser's Office

Typical Appraiser's Tax Map

Reconstruction of Parcel Histories

Object-oriented Parcel Data Tracking: Linking Location, Time, and Description

Ownership Evolution 1975-2000

Hamilton County

Ownership Classes of Clay County – 1975 to 2000

Integration of Ownership and Land Cover – Hamilton County

- The world in a grain of sand 15 km square to represent the entire SE US Coastal Plain
- Exercise in inductive reasoning
- Link to regional scale (Turner)
 - Cause -> Outcome
- Linkage of *in situ* observations to satellite data (Skole)
- Management usually ignored (Houghton)

- Carbon dynamics
 - NEE fairly stable ~10,000 T C yr⁻¹ landscape⁻¹
 - Variation mostly a consequence of harvesting
 - Cutting resets NEE, initially highly negative
 - Cutting removes C from landscape (but not necessarily adds to atmosphere)
 - Fire has immense effect
 - Huge loss of C to atmosphere
 - Periodic
 - Resets NEE level over large and small areas

- Only now (after 2 years of study) linking to land ownership, but is very difficult.
- Will not explain land-cover or C dynamics, but is necessary first step.
 - Owners can conduct activities, make decisions
 - Owners can lease rights of land-cover activities to others who make decisions
- Land Tenure and Management Practices are proximate causes
 - Harvest rotation period, Fertilization, Thinning
 - Fire management
 - change in land use

Linking Land Management and Policy

Land Policy/Tenure provides the rules, rights, restrictions that control management and use of the land/resources (Rules of the Game).

Land Use/Management operates at local scale (Playing of the Game).

Tenure/Policy operates at national/state level.

• Future:

- Paper-products companies who do own land are increasingly quitting the lumber business to become land-development companies
 - St. Joe Paper Co. -> St. Joe Development Co.
 - Georgia-Pacific
 - Others?
- Land owners are changing
 - Heirs selling off
 - Insurance companies (Holding companies)
- Are these and other factors incorporated into landscape-change models?

Policy Implications

- Public policies
 - Land purchases
 - Conservation Easements
- Private interests
 - Land-use restrictions
- Research policies
 - Inherent complexity
 - Captured by modeling?

The End

