### The Future of Food Security in India: Can Farmers Adapt to Environmental Change?



#### Meha Jain

Assistant Professor School for Environment and Sustainability University of Michigan



Co-PIs David Lobell, Ram Fishman. Collaborators: Balwinder Singh, Ashwini Chhatre



Postdocs: Nishan Bhattarai, Sukhwinder Singh. Associate: Preeti Rao, Undergraduate: Adrienne Pollack



Cropped Area LCLUC team: Ruth DeFries, Pinki Mondal, Gillian Galford







#### Temperatures are warming



Chaturvedi et al. 2012

# Monsoon rainfall has increasing break periods & intense events



### Water tables are falling

54% of India's Groundwater Wells Are Decreasing Groundwater Level (meters below ground level) High (<1.5) Medium to High (1.5-5.9) Medium (5.9-10.3) Low to Medium (10.3-14.6) Low (>14.6)

No Data

 How are farmers adapting to multiple environmental changes?

- How are farmers adapting to multiple environmental changes?
- How effective are these adaptation strategies in reducing long-term negative impacts?

- How are farmers adapting to multiple environmental changes?
- How effective are these adaptation strategies in reducing long-term negative impacts?
- Which socio-economic & biophysical factors constrain or enhance adaptation?

- How are farmers adapting to multiple environmental changes?
- How effective are these adaptation strategies in reducing long-term negative impacts?
- Which socio-economic & biophysical factors constrain or enhance adaptation?
- Can satellite data be used to prioritize adaptation interventions?



Approach 1. Examine adaptation at large spatio-temporal scales using coarse scale census data



Approach 1. Examine adaptation at large spatio-temporal scales using coarse scale census data



Approach 1. Examine adaptation at large spatio-temporal scales using coarse scale census data

- + empirical estimates of adaptation
- + examine adaptation at large spatiotemporal scales



**Approach 1**. Examine adaptation at large spatio-temporal scales using coarse scale census data

- + empirical estimates of adaptation
- + examine adaptation at large spatiotemporal scales
- actual adaptation decisions and drivers of decision-making are unclear



**Approach 2**. Examine adaptation using household surveys and ask farmers how they have adapted



**Approach 2**. Examine adaptation using household surveys and ask farmers how they have adapted

+ identify adaptation decisions and drivers of decision-making



**Approach 2**. Examine adaptation using household surveys and ask farmers how they have adapted

- + identify adaptation decisions and drivers of decision-making
- challenging to do across large spatio-temporal scales
- challenging to quantify adaptation















Jain et al. 2017 using methods from Lobell et al. 2015



Jain et al. 2017



Jain et al. 2017

#### Mean annual Evapotranspiration (2001-2016)



Bhattarai et al. in prep.



Bhattarai et al. in prep.

#### Sow Date Distributions for Various States & Regions in IGP of India at initial inflection point Bihar: Begusarai Bihar: Nawada Bihar: Purba Champaran Bihar: Samastipur 0.08 0.06 0.04 0.02 0.00 Haryana: Karnal Haryana: Kurukshetra Haryana: Yamunanagar Punjab: Amritsar 0.08 0.06 Data source density 0.04 Satellite Survey 0.02 0.00 Punjab: Bathinda Punjab: Sangrur Uttar Pradesh: Deoria Uttar Pradesh: Maharajganj 0.08 0.06 0.04 0.02 0.00

300

350

400

300

350

400

Day of year

300

350

400

300

350

Jain et al. in prep

400

### Water tables are falling

54% of India's Groundwater Wells Are Decreasing Groundwater Level (meters below ground level) High (<1.5) Medium to High (1.5-5.9) Medium (5.9-10.3) Low to Medium (10.3-14.6) Low (>14.6)

No Data

 Is groundwater depletion leading to decreased irrigation use or are farmers able to 'chase' the water table?

- Is groundwater depletion leading to decreased irrigation use or are farmers able to 'chase' the water table?
- Is current groundwater depletion associated with yield declines or have farmers been able to adapt?

- Is groundwater depletion leading to decreased irrigation use or are farmers able to 'chase' the water table?
- Is current groundwater depletion associated with yield declines or have farmers been able to adapt?
- Is switching to canal irrigation a viable longterm adaptation strategy?

 Is groundwater depletion leading to decreased irrigation use or are farmers able to 'chase' the water table?

|                        | Ensem ET  |                             |
|------------------------|-----------|-----------------------------|
| Ground water Level (m) | -9.134*** |                             |
|                        | (0.858)   |                             |
|                        |           |                             |
| Precipitation (mm)     | 0.007*    |                             |
|                        | (0.004)   |                             |
|                        |           |                             |
| District FE            | Yes       |                             |
| Year FE                | Yes       |                             |
| Observations           | 2024      |                             |
| Observations           | 3024      |                             |
| $R^2$                  | 0.05      |                             |
|                        |           |                             |
| Note:                  |           | *p<0.1; **p<0.05; ***p<0.01 |

 Is current groundwater depletion associated with yield declines or have farmers been able to adapt?



 Is switching to canal irrigation a viable longterm adaptation strategy?



Jain et al. in prep

A. % Difference in Probability Village is Cropped



C. % Difference in Coefficient of Variation



B. % Difference in Persistent Cropped Area



D. % Difference in Sensitivity to Rainfall (per mm)



#### Conclusions

- Groundwater depletion is already reducing irrigation capacity and the yields of some crops (e.g., wheat)
- Switching to canal irrigation when wells run dry will only be able to ameliorate production losses by ~ 50%
- This suggests that additional adaptation strategies that more efficiently use groundwater are needed (e.g., drip irrigation)

#### Conclusions

- Satellite data allow us to
  - map decision making in response to environmental change at fine spatial resolutions
  - link adaptation with drivers and outcomes at large spatio-temporal scales
  - examine heterogeneity in adaptation efficacy at fine spatial resolution

## Informing Interventions & Capacity Building

- Partnering with CIMMYT and IWMI to identify ways our results and satellite data products can be used to target appropriate interventions regionally
- Conducting remote sensing trainings with scientists from CIMMYT and the Mahalanobis National Crop Forecast Centre on using Google Earth Engine



Co-PIs David Lobell, Ram Fishman. Collaborators: Balwinder Singh, Ashwini Chhatre



Postdocs: Nishan Bhattarai, Sukhwinder Singh. Associate: Preeti Rao, Undergraduate: Adrienne Pollack



Cropped Area LCLUC team: Ruth DeFries, Pinki Mondal, Gillian Galford



# LCLUC

Land Cover/Land-Use Change Program



New Investigator Program (NIP)