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Figure 2. Spatial and temporal distribution of NDVI across the study area, derived from MODIS 
NDVI data from 2001 to 2010. A) Spatial pattern of mean annual NDVI. The subset polygons 
correspond to mean annual precipitation (MAP) intervals. B) Variability of observed NDVI for the 
study region for two MAP ranges.	



Understanding	
  the	
  drivers	
  of	
  large-­‐scale	
  vegeta.on	
  change	
  is	
  cri.cal	
  to	
  managing	
  landscapes	
  and	
  key	
  to	
  predic.ng	
  
how	
  projected	
  climate	
  and	
   land	
  use	
  changes	
  will	
  affect	
   regional	
  vegeta.on	
  cover.	
   In	
  southern	
  Africa,	
   long-­‐term	
  
changes	
  in	
  the	
  ecosystem	
  structure	
  and	
  produc.vity	
  of	
  savannas	
  is	
  thought	
  to	
  be	
  driven	
  by	
  a	
  combina.on	
  of	
  bio.c	
  
and	
  abio.c	
  drivers,	
   and	
  may	
   represent	
   irreversible	
   landscape	
  degrada.on.	
  We	
  applied	
  Dynamic	
  Factor	
  Analysis	
  
(DFA),	
  a	
  mul.variate	
  .mes	
  series	
  dimension	
  reduc.on	
  technique,	
  to	
  inves.gate	
  the	
  shared	
  dynamics	
  of	
  spa.ally	
  
variable	
  vegeta.on	
  coverage	
  across	
  three	
  large	
  watersheds	
  in	
  southern	
  Africa	
  over	
  ten	
  years	
  and	
  to	
  iden.fy	
  the	
  
most	
   important	
   physical	
   drivers	
   of	
   vegeta.on	
   change	
   in	
   the	
   region.	
   NDVI	
   is	
   described	
   by	
   a	
   paLern	
   of	
   cyclic	
  
seasonal	
  varia.on,	
  with	
  dis.nct	
  spa.o-­‐temporal	
  paLerns	
  in	
  different	
  physio-­‐geographic	
  regions.	
  For	
  the	
  subregion	
  
in	
  which	
  Mean	
  Annual	
   Precipita.on	
   (MAP)	
   <	
   750	
  mm	
  N	
  DVI	
  was	
   found	
   to	
   be	
  most	
   strongly	
   influenced	
   by	
   soil	
  
moisture	
  and	
  precipita.on,	
  with	
  much	
  smaller	
  effects	
  of	
  fire,	
  evapotranspira.on,	
  and	
  temperature.	
  On	
  the	
  other	
  
hand,	
   in	
   regions	
   with	
  MAP	
   >	
   ~900	
   mm,	
   fire	
   and	
   temperature	
   began	
   to	
   dominate,	
   followed	
   in	
   importance	
   by	
  
evapotranspira.on.	
   While	
   a	
   number	
   of	
   previous	
   studies	
   of	
   NDVI	
   in	
   southern	
   Africa	
   have	
   focused	
   on	
   the	
  
rela.onship	
  between	
  NDVI	
  and	
  one	
  or	
  two	
  explanatory	
  variables,	
  in	
  this	
  work	
  we	
  quan.fied	
  the	
  combined	
  spa.o-­‐
temporal	
  effects	
  of	
  a	
  suite	
  of	
  environmental	
  drivers	
  on	
  NDVI	
  across	
  a	
  diverse	
  and	
  sensi.ve	
  savanna	
  region.	
  This	
  
expands	
  our	
  ability	
  to	
  understand	
  landscape	
  level	
  changes	
  in	
  vegeta.on	
  evaluated	
  through	
  remote	
  sensing,	
  and	
  
improves	
   the	
   basis	
   for	
   management	
   of	
   vulnerable	
   regions	
   like	
   southern	
   Africa	
   savannas.	
   Addi.onally,	
   these	
  
methods	
  also	
  allow	
  us	
  to	
  develop	
  models	
  of	
  predicted	
  surfaces,	
   link	
  to	
  local	
   level	
   land	
  use	
  changes	
  and	
  develop	
  
spa.ally	
  explicit	
  change	
  analyses	
  at	
  a	
  monthly	
  .me-­‐step.	
  We	
  can	
  also	
  use	
  these	
  developed	
  models	
  to	
  predict	
  this	
  
landscape	
  out	
  into	
  the	
  future	
  under	
  changing	
  clima.c	
  condi.ons,	
  and	
  link	
  to	
  extreme	
  events	
  and	
  highlight	
  the	
  role	
  
of	
  socioeconomic	
  ins.tu.ons	
  in	
  poten.al	
  adapta.on	
  efforts.	



Study	
  area	
  
The Okavango, Kwando, and Upper Zambezi 
watershed. The study area cover 681,545 km2 
in tropical  and sub-tropical  southern Africa: 
Zambia, Angola, Namibia and Botswana (Fig. 
1). Mean annual precipitation (MAP) ranges 
from under 400mm to 1400 mm yr-1 and is 
strongly  correlated  with  latitude  and 
elevation,  with  highest  rainfall  in  the 
mountainous north.	



Remote	
  sensing	
  data	
  
Remote sensing data included ten years (2001-2010) of monthly NDVI data (response 
variable) and a suite of environmental variables used as candidate explanatory variables in 
the  analysis,  including precipitation (P),  mean temperature  (T),  minimum temperature 
(Tmin), maximum temperature (Tmax), soil moisture (S), relative humidity (H), fire (F) 
and  potential  evapotranspiration  rate  (E).  Time  series  of  response  and  explanatory 
variables were aggregated from pixel-scale data by extracting mean values over areas 
defined by different precipitation intervals for each of the three drainage basins, producing 
48 individual data polygons (Fig. 2).	


	

 Results	
  

NDVI was described by cyclic seasonal variation with distinct spatiotemporal 
patterns in different physiographic regions (Fig 2). Incremental best models 
are shown in Fig 3 (in bold). Results support existing work emphasizing the 
importance of precipitation, soil moisture and fire on NDVI, but also reveal 
overlooked  effects  of  temperature  and  evapotranspiration,  particularly  in 
regions  with  higher  mean  annual  precipitation  (MAP).  Critically,  spatial 
distributions of the weights of environmental covariates point to a transition 
in  the  importance  of  precipitation  and  soil  moisture  (strongest  in  grass-
dominated regions with MAP < 750mm) to fire, potential evapotranspiration 
(PET),  and  temperature  (strongest  in  tree-dominated  regions  with  MAP > 
950mm) (Fig. 4).	



Conclusion	
  
We  quantified  the  combined  spatiotemporal  effects  of  a  complete  suite  of 
environmental  drivers on NDVI across a large and diverse savanna region. Results 
highlight  the  utility  of  applying the  DFA approach to  remote  sensing products  for 
regional analyses of landscape change in the context of global environmental change. 
With the dramatic increase in global change research, this methodology augurs well for 
further  development  and  application  of  spatially  explicit  time  series  modeling  to 
studies at the intersection of biogeography, ecology and remote sensing. 	



Figure  4.  Model  bk,n  regression  coefficients,  illustrating  the  weight  (or  importance)  of  each 
explanatory  variable  for  driving  NDVI  in  savanna  ecosystems  as  a  function  of  MAP.  Lines 
represent  the  main  trajectories  and  highlight  the  change  in  the  importance  of  environmental 
drivers along a gradient from grass- to tree-dominated landscape.	
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where Sn(t) is a vector containing the set of N response variables (n=1,N); 
αm(t) is a vector containing the M common trends (m=1,M); γm,n are factor 
loadings or weighting coefficients, which indicate the importance of each of 
the  common  trends;  µn  is  a  constant  level  parameter;  vk(t)  is  a  vector 
containing  the  K  explanatory  variables  (k=0,K);  and  βk,n  are  regression 
coefficients  indicating the  importance  of  each of  the  explanatory  variable. 
Here, Sn represents the 48 NDVI time series (each polygon in Fig. 2). 	



Dynamic	
  Factor	
  analysis	
  (DFA)	
  
DFA is a statistical explanatory tool built upon common patterns among, and 
interactions between, response and explanatory time series. Thus, no a priori 
understanding  of  interactions  between  response  (NDVI)  and  explanatory 
variables  (e.g.  precipitation,  fire  etc.)  is  required.  DFA models  temporal 
variation in response variable as linear combinations of common trends, zero 
or more explanatory variables, a constant intercept parameter, and noise as:	



Figure 3. Incremental improvement of multi-linear regression performance with the addition of the 
explanatory variables: Precipitation (P), Temperature (T), Soil Moisture (S), Fire (F) and Potential 
Evapotranspiration (E). Incremental best models are shown in bold with white symbols with solid 
lines indicating the weighted average and dashed lines the range across the spatial domain. (Ceff: 
Nash-Sutcliffe Efficient Coefficient; BIC: Bayesian Information Criterion).	



Figure 1. Study area	



Figure 5. (a) Spatial pattern of Kendall’s correlation coefficient (τ). The positive value indicates 
an increasing trend, whereas the negative value indicates a decreasing trend (at significant level of 
0.1).; and (b) Spatial pattern of Sen’s slope of the OKZ catchment. The positive value indicates an 
increasing trend, whereas the negative value indicates a decreasing trend 	



a)	
   b)	
  

Using this developed model, we then modeled the predicted NDVI value for each 
precipitation polygon (for each month across the 10 years), and then subtracted each 
months actual NDVI. The resultant monthly coverages were then compiled and surface 
change significance determined. The seasonal Kendall’s test was applied to detect the 
trends in the difference between the observed and the predicted NDVI. It is a non-
parametric test which is more suitable when the normality and independence of 
variable is violated. If it is greater than zero and statistically significant, there is an 
increasing trend; if it is less than zero and statistically significant, there is a decreasing 
trend (Fig. 5a). The extent of the trend can be represented by the median of Sen’s 
slopes for all months. The positive value indicates an increasing trend, and vice versa 
(Fig. 5b). 	




