Archetypical Pathways of Direct and Indirect Land-Use Change Caused by Economic Land Concessions in Cambodia

Nicholas Magliocca, Quy Van Khuc, Evan Ellicott, Ariane de Bremond, Kuishuang Feng

LCLUC Meeting, Rockville, MD April 10, 2019

^b UNIVERSITÄT BERN

CDE CENTRE FOR DEVELOPMEN AND ENVIRONMENT

Nicholas Magliocca University of Alabama Co-l

Ariane de Bremond GLP/CDE/UNIBE U of Maryland Pl

Evan Ellicott U of Maryland, College Park Geographical Sciences Co-l

Kuishuang Feng

U of Maryland, College Park Geographical Sciences Co-l

Quy Khuc University of Alabama Post-doc

Economic Globalization and Land-Use Change

- Increase of large-scale land acquisitions (LSLAs) was observed in the previous two decades
- External investors (foreign and/or domestic) seeking to secure access to land to produce food, biofuels, and other agricultural commodities or for speculation.

Economic Globalization and Land-Use Change

- Cambodia in particular has been targeted
 - Economic Land Concessions (ELCs) cover 2.3 Mha (Open Dev. Cambodia)
 - ELC contribution to forest loss rose from 12.1% in 2001 to 27.0% in 2012 (Davis et al. 2015)

Knowledge Gaps

- Global to national-level; many local case studies
 - Descriptive generalizations or in-depth, context-dependent analyses
 - Systematic linking across scales has not been done
- Accounting for commodity-driven land-use changes is difficult
 - Disentangling direct and indirect land-use changes (LUC)
 - Focus on either environmental or social impacts, rarely integrated
- Basic question: How do global commodity signals in the form of LSLAs transform local landscapes and through what pathways?

Conceptual Framework: Commodity pathways (Meyfroidt 2015)

- Commodity-driven pathways for direct and indirect LUC caused by ELCs in Cambodia
 - Pathways: causal chains of events leading to specific outcomes

 Archetypes: recurring 'building-blocks' of factors and/or processes that can be combined in various ways to simply describe or infer causal mechanisms from a population of cases

Objectives and Methods Overview

Disentangle and quantify forest loss caused by direct and indirect LUC

- How significant is iLUC?
- Mixed methods triangulation and synthesis
 - Remote sensing change detection
 - Case-study synthesis
 - Survival analysis
 - Quasi-experimental matching

Methods: Economic Land Concessions

- Open Development Cambodia (ODC)
 - Consistent with Land Matrix criteria
 - From 2000-2012, 210 ELCs
- Time-dependent variables
 - Population
 - Commodity prices
- Time-independent variables
 - Biophysical production conditions
 - Market accessibility
 - Social and land use (ODC)

Methods: Forest Change Detection

- Hansen et al. (2013) global forest change product
- Year of ≥ 10% forest loss (total or annual) since ELC establishment or implementation year
- Direct LUC within 500m buffer of boundary
- Indirect LUC within containing commune

Forest Loss Year

Methods: Qualitative Comparative Analysis (QCA)

- Identify common acquisition processes leading to various socioeconomic and land-use change outcomes
 - Linking case studies to georeferenced ELC boundaries (Open Development Cambodia)
 - Included 30 cases from 18 articles
 - Coded for displacement, conflict, employment, compensation, migration, iLUC

Results: Causal configurations leading to (no) iLUC

- Six casual configurations were identified as <u>leading to iLUC</u>: rapid LUC (≤ 3 years), rubber, displacement and conflict
- 2. Three causal configurations were associated with the <u>absence of iLUC</u>: rapid LUC and not rubber; gradual LUC, rubber, no displacement

Methods: Survival Analysis

- Estimate potential causal effects of local conditions and regional/global markets signals on the **timing** of ELC establishment and direct LUC within ELC boundaries
 - Probability of 'survival' (i.e., change of state) for each year and location
 - Establish initial causal factor, sequence of events

Results: Survival probability until ELC establishment, direct LUC

- 1. Rubber price ELCs 43.7% more likely over time for specialized crops (e.g., rubber)
- 2. Cassava price ELCs 33.2% less likely over time for multi-use crops (e.g., cassava)
- 3. Direct LUC 5% less likely with longer time since establishment

Methods: Propensity Score Matching

- Test for whether iLUC was higher in communes containing ELCs (treatment) than in those without (control)
 - Quasi-experimental matching using commune propensity score for threshold deforestation within ELC
 - Matched based on pop. density, % forest cover, market access, slope, rice ratio (median bias 5.83%)

Results: Average treatment effect on the treated (ATT) – observable iLUC

- 1. Communes with ELCs producing rubber were **29.3% more likely**
- 2. Communes with ELCs undergoing direct LUC within 3 years of their transaction date were **25.9% more likely**
- 3. Communes in provinces with > 20% of land in ELCs were 64.3% more likely

Results: Archetypical Pathways

- QCA results for causal mechanisms and social outcomes
- Observed rates of direct and indirect LUC
- Link in space and time using causal inference

Archetypical Pathways Analysis

Results: Archetypical Pathways: iLUC

Archetypical pathways associated with iLUC

Results: Archetypical Pathways: no iLUC

• Archetypical pathways associated **without iLUC**

Methods: iLUC Deforestation Estimates

- iLUC archetypes
- Two spatial scenarios
 - 2km buffer (low estimate)
 - Commune (high estimate)
- Two temporal scenarios (0 to 4 years)
 - Deal year (establishment)
 - Implementation year

How much forest loss is due to iLUC?

Results: Deforestation Estimates

iLUC from ELCs adds 3 – 11% of Cambodia's forest loss

		Forest Loss within 2 km Buffer (1000 ha)			Forest Loss within Zone 1 (1000 ha)									
Time Lag		Avg. Annual	Max. Annual	Total	Avg. Annual	Max. Annual	Total	Percent Forest Loss						
Since Deal Year	0	1.87	7.79	22.42	5.61	25.04	67.38				 % of Total KHM Forest Loss % of Total ELC Area 			
	1	2.98	10.63	35.76	9.06	29.50	108.70	26						
	2	4.06	11.25	48.71	13.05	32.66	156.54	20	20		■ % of Tot ■ % of Tot	% of Total KHM Forest % of Total KHM Area		
	3	5.16	11.56	61.96	17.28	35.81	207.31	19						
	4	6.05	12.60	72.65	21.23	39.57	254.79			10	11			
Since Implmnt. Year	0	2.26	10.95	29.38	6.61	27.04	85.95			7	8	2	Д	
	1	3.43	11.57	44.57	10.10	31.16	131.26					³ 2	3	
	2	4.49	12.86	58.39	13.39	37.30	174.01	Deal Year	Implementation	Deal Year	Implementation	Deal Year	Implementation	
	3	5.41	12.97	64.96	17.20	37.38	206.46	Year LUC	Year		Year	:	Year	
	4	6.28	13.85	69.09	21.03	41.18	231.30		ILUC (High)		ILUC (LOW)			

- Indirect LUC is a non-trivial contribution to overall forest loss
- Synthesis is still a key priority for LCLUC, Global Land Programme
- Synthesis methods enabled linkage of process information to remote sensing and statistical signatures
 - Mixed-methods triangulation in space and time
 - Attribution of direct and indirect effects -> quantification of LCLUC with remote sensing tools
 - New questions can be raised, answered

Thank you for your attention!

Email: nrmagliocca@ua.edu

LCLUC Meeting, Rockville, MD April 10, 2019

NASA Award #15-LCLUC15_2-0036

Land Matrix

UNIVERSITÄT BERN CDE

CDE CENTRE FOR DEVELOPMENT AND ENVIRONMENT

Case 1: Palm oil, Gradual LC, iLUC

Case 2: Teak & Other Crops, Gradual LC, No iLUC

Forest Loss Year

Case 3: Rubber, Rapid LC, iLUC

Forest Loss Year

Case 4: Rubber, No LC, No iLUC

(e.g., rubber)

Forest Loss Year

conversion

iluc

Forest Loss Year

0	9
1	10
2	11
3	12
4	13
5	14
6	15
7	1 6
8	

Conceptual Framework

