Greenhouse Gas Fluxes Across Palm Oil-Riparian Interface

Justin Sentian¹, Harry John Kuling², Ute Skiba², Julia Drewer²

Climate Change Research Group, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 84400, Kota Kinabalu, Malaysia.

² Centre for Ecology and Hydrology, Bush Estate, Penicuik, Midlothian

Centre for CIEN Ecology & Hydrology

SAFE Site in Sabah (Borneo) - launched in 2011

- SAFE Site is one of the largest ecological studies site in the world – encompassing 8000 ha
- One of the study focus is to investigate the impact of agricultural development on the ecosystem's ability to absorb carbon dioxide, an important greenhouse gas.

- To quantify soil carbon dioxide (CO_2) , nitrous oxide (N_2O) , and methane (CH_4) fluxes from soil in riparian habitats across land use gradients oil palm plantations to buffer strips and the river
- To investigate the efficiency of riparian buffer strips to retain nitrogen

NATURAL ENVIRONMENT RESEARCH COUNCIL

Measurements

The impact of oil palm plantations on soil nutrient translocation to riparian buffer strips and rivers (Greenhouse Gas Fluxes Across Palm Oil-Riparian Interface)

Measurements (Nov 2016 – Nov 2017) (1 year cycle)

3 sites

- OP1 steep sloping forest-river
- OP2 flat riparian, ferns
- OP3 Long riparian (~68m), steep sloping forest-river
- Atmosphere- GHG emission (CH₄, N₂O, CO₂)
- Soil NH4 and NO3 concentrations, pH, soil moisture, temperature, bulk density
- River GHG emission, NH4 and NO3 concentraTions, *in situ* parameters

River sampling

Gas sampling

Soil extraction

Glass Vials

Soil sampling

Site 1

Site 3

Site 2

Temporal and Spatial Variability of GHGs (N₂O)

Temporal and Spatial Variability of GHGs (CO₂)

Temporal and Spatial Variability of GHGs (CH₄)

The impact of oil palm plantations on soil nutrient translocation to riparian buffer strips and rivers (CO₂)

The impact of oil palm plantations on soil nutrient translocation to riparian buffer strips and rivers (N₂O)

The impact of oil palm plantations on soil nutrient translocation to riparian buffer strips and rivers

Meteorological and environmental factors?

Nutrients: NO₃ and NH₄

SITE 3

River Concentrations

Summary

The efficiency of riparian buffer strips to retain nitrogen

- Small differences OP vs RR nutrient and Greenhouse Gases
- We need to establish if OP management or inherent differences between OP and RR are the cause for the small differences observed
- River concentration low

The importance of riparian buffer strips as a source of GHG emissions

- Riparian is importance source of N₂O and CO2 emissions
- CH4 uptake is higher in riparian

