

Moving from Prototyping Multisource Imaging of Seasonal Dynamics in Land Surface Phenology to Production

Jordan Graesser¹, Eli Melaas¹, Josh Gray², Thomas K. Maiersperger³ and Mark Friedl¹

¹Earth and Environment, Boston University ²Forestry and Natural Resources, North Carolina State University ³Land Processes Distributed Active Archive Center (LP DAAC), USGS EROS

International Collaborator: Lars Eklundh, Lund University, Sweden

Land Surface Phenology

Exploit temporal density of Landsat + Sentinel 2:

- To generate gap-filled time series of spectral vegetation indices that characterize the entire seasonal cycle of land surface phenology at fixed time steps.
- To quantify the timing and magnitude of land surface phenology events ("phenometrics") at moderate spatial resolution.

Heritage: MODIS Land Cover Min EVI Dynamics (MCD12Q2) Includes 7 metrics Onset of EVI increase, Max EVI ΣΕνι

Timing

igodol

- Onset of EVI maximum,
- Onset of EVI decrease,
- Onset of EVI minimum,
- Annual • Min, max, & sum of growing season EVI Metrics

Heritage: Landsat Phenology Algorithm

Melaas et al., 2013, 2016

From Coarse to Moderate Spatial Resolution

Operationalize a prototype moderate spatial resolution LSP algorithm at continental scale.

• To produce moderate spatial resolution land surface phenology data sets at continental scale that provide: **(1) the timing of phenological events**, **(2)** reduced dimension image data sets that maximize multispectral information and minimize temporal correlation in image time series, and **(3)** identify in-season anomalies in near real-time.

Operationalize a prototype moderate spatial resolution LSP algorithm at continental scale.

• To produce moderate spatial resolution land surface phenology data sets at continental scale that provide: (1) the timing of phenological events, (2) reduced dimension image data sets that maximize multispectral information and minimize temporal correlation in image time series, and (3) identify in-season anomalies in near real-time.

Operationalize a prototype moderate spatial resolution LSP algorithm at continental scale.

• To produce moderate spatial resolution land surface phenology data sets at continental scale that provide: (1) the timing of phenological events, (2) reduced dimension image data sets that maximize multispectral information and minimize temporal correlation in image time series, and (3) **identify in-season anomalies in near real-time.**

Operationalize a prototype moderate spatial resolution LSP algorithm at continental scale.

- To produce moderate spatial resolution land surface phenology data sets at continental scale that provide: (1) the timing of phenological events, (2) reduced dimension image data sets that maximize multispectral information and minimize temporal correlation in image time series, and (3) identify in-season anomalies in near real-time.
- To perform validation and accuracy assessment, provide documentation related to the algorithm and the uncertainty associated with the product, and to work with the Land Processes Distributed Active Archive Center (LP-DAAC) to distribute the product to the user community.

Harmonized Landsat Sentinel-2 (HLS)

Sentinel-2A

- 10, 20 m spatial res.
- 10-day revisit
- Oct. 2015
 - present

<u>HLS</u>

- 30 m spatial res.
- 3- to 5-day revisit
- May 2013 present
- BRDF Normalized
- Cloud/Shadow Mask

Landsat 8

- 30 m spatial res.
- 16-day revisit
- May 2013 present

Multisource Land Surface Phenology (MS-LSP)

Local vs. Global Fitting Methods: Splines, Double Logistic, Savitzky Golay

Pre-Procesing (1): Gap-Filling/Imputation via MICE (Multiple Imputation by Chained Equations)

Pre-Procesing(2): Topographic Corrections

Spring Greenup, Coweeta, 2016

Sample Results

Cropland Dominated Landscapes

16 HLS Tiles

Sample Results: Eastern Colorado

Blue: DoY 70 — March 10 Green: DoY 170 — June 18 Red: DoY 270 — Sept. 26 Sample Results: Eastern Colorado

Sample Results: Eastern Colorado

Blue: DoY 70 — March 10 Green: DoY 170 — June 18 Red: DoY 270 — Sept. 26

Sample Results: Kansas

Blue: DoY 70 — March 10 Green: DoY 170 — June 18 Red: DoY 270 — Sept. 26 Sample Results: Kansas

Sample Results: Kansas

Operational MS-LSP Product

Distributed via LP-DAAC

cience Data Set	SDS Description
Reference Date	Accounts for differences in seasonality across hemispheres; Jan 1, 2015 in Northern Hemisphere – see Timing Metrics below
Phenological Timing Metrics	
Onset Greenness Increase (OGI)	Date, number of days from Reference Date
50 Percent Greenness Increase (50PCGI)	Date, number of days from Reference Date
Onset Greenness Maximum (OGMx)	Date, number of days from Reference Date
Onset Greenness Decrease (OGD)	Date, number of days from Reference Date
50 Percent Greenness Decrease (50PCGD)	Date, number of days from Reference Date
Onset Greenness Minimum (OGMn)	Date, number of days from Reference Date
Integrated Greenness	Sum of daily EVI during growing season
HLS Reflectance Metrics	
HLS Reflectance on OGI Date	Bands 1-6 HLS surface reflectance on OGI date
HLS Reflectance on 50PCGI Date	Bands 1-6 HLS surface reflectance on 50PCGI date
HLS Reflectance on OGMx Date	Bands 1-6 HLS surface reflectance on OGMx date
HLS Reflectance on OGD Date	Bands 1-6 HLS surface reflectance on OGD date
HLS Reflectance on 50PCGD Date	Bands 1-6 HLS surface reflectance on 50PCGD date
HLS Reflectance on OGMn Date	Bands 1-6 HLS surface reflectance on OGMn date
LSP Mean and Anomaly Metrics	
Long Term Weekly Mean EVI	Average EVI across available years, at 7-day time steps; Available in 2019.
Weekly EVI Anomaly	In-season anomaly in EVI, relative to long-term mean, at 7-day time steps; Available in 2019.
Cumulative EVI Growing Season Anomaly	Sum of anomalies in daily interpolated EVI versus long-term mean at each pixel; Available in 2019.

Assessment:

PhenoCams,

NPN

PhenoCam Spring Onset Bias (days)

10

n

Next Steps

- HLS 2.0
- Addition of Sentinel 2B
- Continued prototyping and testing (semi arid, high-latitude systems, etc.)
- Deployment in production system
- Targeting release of VO Product in Q2 2019