

Department of Geography, University of Maryland at College Park email: andrea.baraldi@hermes.geog.umd.edu; luigi.boschetti@hermes.geog.umd.edu; justice@hermes.geog.umd.edu

SIAMTM as a deductive physical model**based preliminary classifier**

SIAMTM is an automatic, multi-sensor, multi-resolution, near realtime, non-adaptive (deductive, physical model-based) decisiontree classifier based on prior spectral knowledge of surface types observed from space. Its prior spectral knowledge base comprises a reference dictionary of spectral signatures in top-of-atmosphere reflectance or surface reflectance, acquired from off-line data observations and/or existing literature. Since its knowledge base is available before looking at the specific image to be classified, SIAMTM belongs to the family of physical models, also called deductive inference systems. Employed as a preliminary classification first stage of a two-stage remote sensing image understanding system, SIAMTM enforces a shift in learning paradigm from traditional first-stage inductive Machine-Learning-from-data (e.g., image segmentation) to deductive Machine-Teaching-by-rules.

Web-Enabled Landsat Data set (WELD), 30 m resolution, composite of 501 tiles, year 2007.

First-stage SIAMTM preliminary classification onto a discrete and finite set of spectral categories

The first-stage SIAMTM preliminary classifier requires as input multi-spectral images radiometrically calibrated into top-of-atmosphere or surface reflectance, and brightness temperature. SIAMTM is pixel-based (non-contextual), i.e., it is based on spectral properties exclusively. It maps each pixel onto a discrete and finite set of spectral categories (spectralbased semi-concepts, land cover class sets) belonging to a set of six spectral super-categories (spectral end members): (I) clouds, (II) snow or ice, (III) water or shadow, (IV)

SIAMTM multi-sensor multi-resolution capabilities

SIAMTM is a multi-sensor multi-resolution classification system of systems eligible for use with all existing spaceborne optical sensors whose: (a) spectral resolution overlaps with, but is inferior to, Landsat's and (b) spatial resolution ranges from 0.5 m (pan-sharpened WV-2) to 3 km (Meteosat SEVIRI). SIAMTM consists of six sub-systems.

- 7-band Landsat TM-like (L-SIAM, 95/47/18 spectral categories)
- 4-band SPOT HRVIR-like (S-SIAM, 68/40/15 spectral categories)
- 4-band AVHRR-like (AV-SIAM, 82/42/16 spectral categories)
- 5-band AATSR-like (AA-SIAM, 82/42/16 spectral categories) • 4-band IKONOS-like (I-SIAM, 52/28/12 spectral categories)

vegetation, (V) bare soil or built-up and (VI) outliers.

Automatic two-stage land cover

Stratified (layered, class-specific) context-sensitive approach: Texture, Morphology, Geometry, Spatial topological and non-topological relationships.

A novel automatic two-stage land cover classification system is proposed. It employs: (i) SIAMTM as its preliminary classification first stage and (ii) a second-stage stratified context-sensitive class- and battery of application-specific rule-based classifiers. Possible input features to the second stage are listed below.

- Spectral categories generated by the first-stage SIAMTM preliminary classifier.
- (Achromatic) brightness.

First-stage preliminary

classification in

spectral categories -

SIAM™

Operational quality indicators of SIAMTM

- Degree of automation. Fully automatic (no user-defined parameter, no training samples).
- Efficiency. Near real-time (less than 5 min to classify a Landsat scene with a laptop computer).
- Accuracy. > 90% (evaluated globally up to Stage 2, i.e., across a range of representative conditions and a variety of spaceborne sensors).
- Robustness to changes in the input data set acquired across time, space, and sensors. Very high, refer to literature.
- Maintainability, scalability, reusability. Eligible for use with all spaceborne multispectral optical sensors.
- Timeliness. Real time processing with no user supervision.

- Multi-scale texture features.
- Multi-scale morphological features.
- Segment-based geometric attributes.
- Inter-segment spatial relationships: Topological (e.g., adjacency, inclusion). Non-topological (e.g., distance, angle).

Second-stage land

cover classification

Economy. Maximized (no manpower, low computing power).

Essential references

• SIAMTM is a registered trademark of Andrea Baraldi and University of Maryland

• A. Baraldi, V. Puzzolo, et al., "Automatic spectral rule-based preliminary mapping of calibrated Landsat TM and ETM+ images," IEEE TGRS, vol. 44, no. 9, pp. 2563-2586, 2006.

• A. Baraldi, L. Durieux, et al., "Automatic spectral rulebased preliminary classification of radiometrically calibrated SPOT-4/-5/IRS, AVHRR/MSG, AATSR, IKONOS QuickBird / OrbView / GeoEye and DMC/SPOT-1/-2 imagery," IEEE TGRS, vol. 48, no. 3, pp. 1299 - 1325, 2010.

For example, a two-stage forest/non-forest classification of 30 m resolution 7-band Landsat TM and ETM+ images is shown on the right. In series with SIAMTM the novel twostage classifier employs brightness and multi-scale texture as inputs to the context-sensitive second stage.

Satellite multi-spectral image