LCLUC SARI International Regional Science Meeting in SSEA Chiang Mai, Thailand July 17-19, 2017

Improving the Satellite Derived Forest Cover Dynamics in South and Southeast Asia

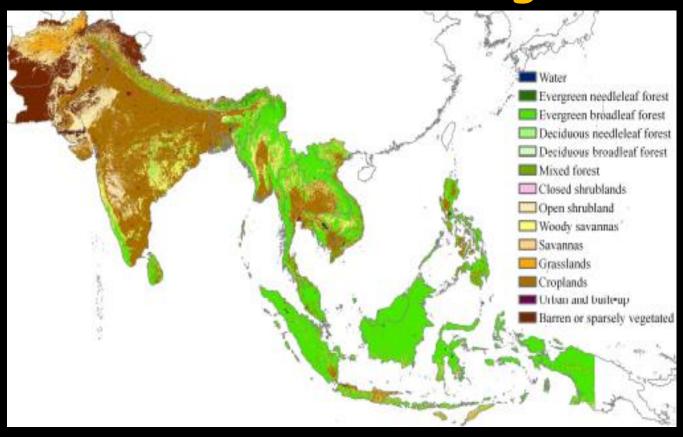
Atul Jain*

University of Illinois, Urbana, IL 61801 *Email: jain1@illinois.edu

<u>Acknowledgements</u>

Hammad Gilani and Regional and US CO-Is & Collaborators NASA LCLUC Program, University of Illinois, UC

SSEA Region



LCLUC distribution in the study region

- Covers about 16% of earth's land surface
- Characterized by a long history of LCLUC activities
- The home for over 50% of the world's population
- Understand the LCLUC dynamics and drivers

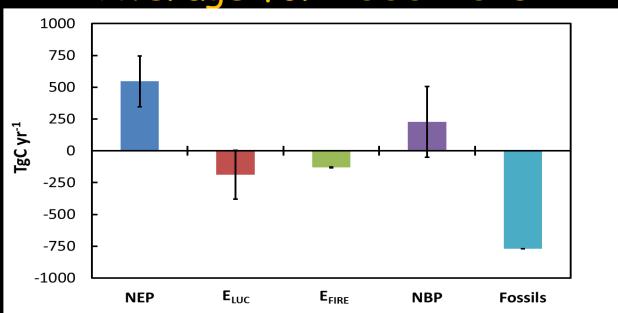
Background

- Three principal objectives
 - To understand the major LCLUC transition activities in the study region.
 - To advance our understanding of the causes of LCLUC.
 - To improve our understanding of the historical effects of LCLUC dynamics on the quantities and pathways of terrestrial carbon and nitrogen fluxes.

The terrestrial carbon budget of South and Southeast Asia

Matthew Cervarich¹, Shijie Shu¹, Atul K Jain^{1,15}, Almut Arneth², Josep Canadell³, Pierre Friedlingstein⁴, Richard A Houghton⁵, Etsushi Kato⁶, Charles Koven⁷, Prabir Patra⁸, Ben Poulter⁹, Stephen Sitch¹⁰, Beni Stocker¹¹, Nicolas Viovy¹², Andy Wiltshire¹³ and Ning Zeng¹⁴

Mean Carbon Fluxes SSEA Average for 2000-2013



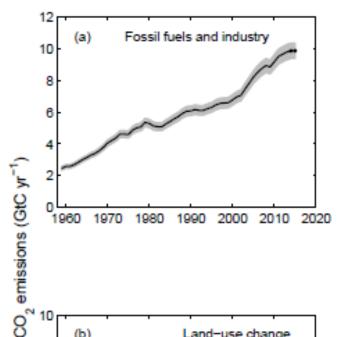
*Positive values are the land sink of carbon

Cervarich et al. (ERL, 2016)

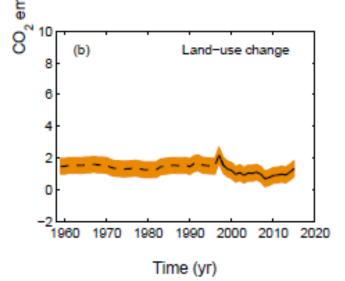
Global Carbon Budget 2016

Corinne Le Quéré¹, Robbie M. Andrew², Josep G. Canadell³, Stephen Sitch⁴, Jan Ivar Korsbakken², Glen P. Peters², Andrew C. Mannino⁵, Thomas A. Boden⁶, Pieter P, Tans⁷, Richard A. Houghton⁸,

Ralph F. Keeling⁹, Sir Laurent Bopp¹⁴, From Christine Delire¹⁷, Scot Judith Hauck²², Vanes Etsushi Kato²⁶, Arne K Sebastian Lienert^{31,32}, I Pedro M. S. Monteir Kevin O'Brien³⁹, Ar Benjamin Poulter^{42,43}, C Roland Séférian¹⁷, Ingunn S Hanqin Tian⁴⁹, Bronte Nicolas Viovy¹⁴,



thoni¹¹, Leticia Barbero^{12,13},
ppe Ciais¹⁴, Kim Currie¹⁶,
nos Gkritzalis²⁰, Ian Harris²¹,
n Goldewijk²⁴, Atul K. Jain²⁵,
e Lefèvre²⁹, Andrew Lenton³⁰,
colas Metzl²⁹, Frank Millero³⁵,
el²⁸, Shin-ichiro Nakaoka³⁸,
o Ono⁴¹, Denis Pierrot^{12,13},
e Schuster⁴, Jörg Schwinger⁴⁶,
ne J. Sutton^{39,10}, Taro Takahashi⁴⁸,
c⁵¹, Guido R. van der Werf⁵²,
el⁵⁴, and Sönke Zaehle⁴⁴

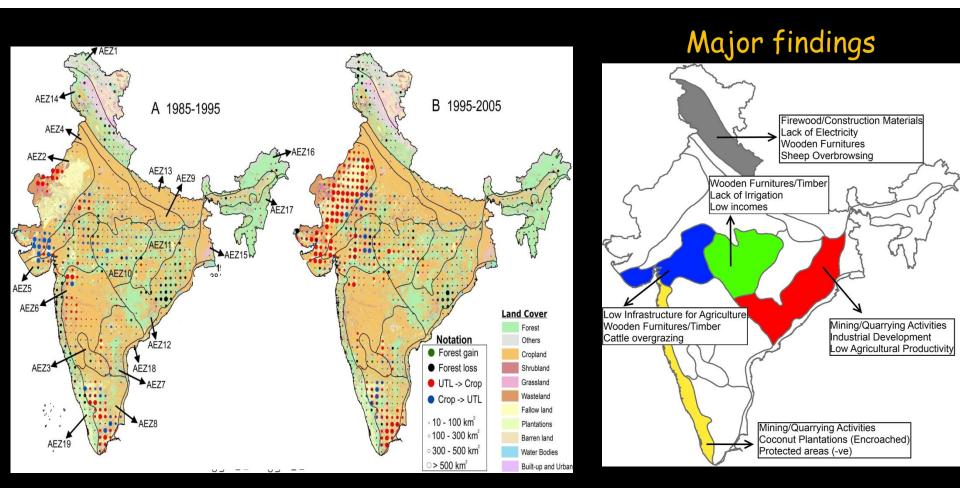


Dynamics and determinants of land change in India: integrating satellite data with village socioeconomics

Reg Environ Change

DOI 10.1007/s10113-016-1068-2

Prasanth Meiyappan¹ · Parth S. Roy² · Yeshu Sharma³ · Reshma M. Ramachandran² · Pawan K. Joshi⁴ · Ruth S. DeFries⁵ · Atul K. Jain¹

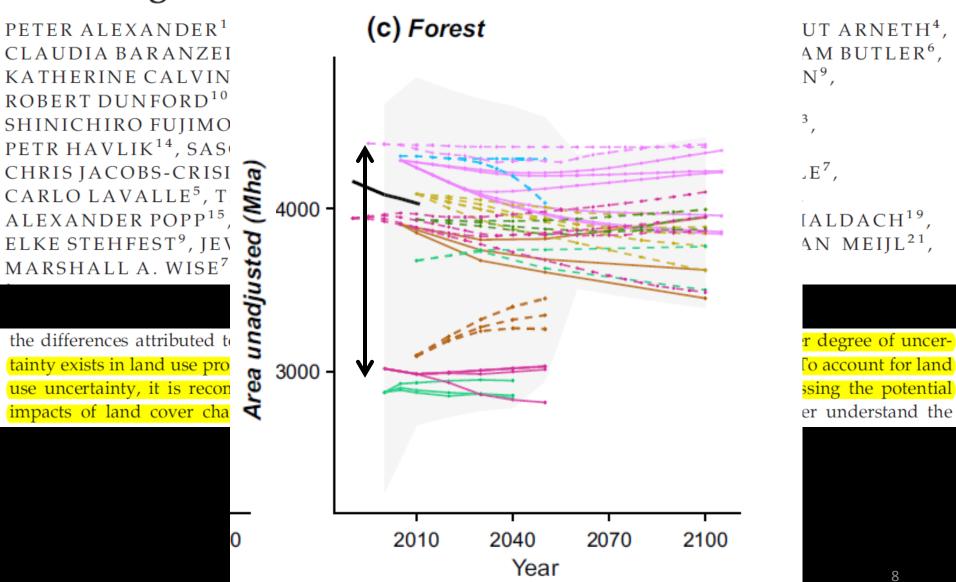


Assessing uncertainties in land cover projections

PETER ALEXANDER^{1,2}, REINHARD PRESTELE³, PETER H. VERBURG³, ALMUT ARNETH⁴, CLAUDIA BARANZELLI⁵, FILIPE BATISTA E SILVA⁵, CALUM BROWN¹, ADAM BUTLER⁶, KATHERINE CALVIN⁷, NICOLAS DENDONCKER⁸, JONATHAN C. DOELMAN⁹, ROBERT DUNFORD^{10,11}, KERSTIN ENGSTRÖM¹², DAVID EITELBERG³, SHINICHIRO FUJIMORI¹³, PAULA A. HARRISON¹¹, TOMOKO HASEGAWA¹³, PETR HAVLIK¹⁴, SASCHA HOLZHAUER¹, FLORIAN HUMPENÖDER¹⁵, CHRIS JACOBS-CRISIONI⁵, ATUL K. JAIN¹⁶, TAMÁS KRISZTIN¹⁴, PAGE KYLE⁷, CARLO LAVALLE⁵, TIM LENTON¹⁷, JIAYI LIU⁶, PRASANTH MEIYAPPAN¹⁶, ALEXANDER POPP¹⁵, TOM POWELL¹⁷, RONALD D. SANDS¹⁸, RÜDIGER SCHALDACH¹⁹, ELKE STEHFEST⁹, JEVGENIJS STEINBUKS²⁰, ANDRZEJ TABEAU²¹, HANS VAN MEIJL²¹, MARSHALL A. WISE⁷ and MARK D. A. ROUNSEVELL¹

the differences attributed to the scenario variations. The results lead us to conclude that a higher degree of uncertainty exists in land use projections than currently included in climate or earth system projections. To account for land use uncertainty, it is recommended to use a diverse set of models and approaches when assessing the potential impacts of land cover change on future climate. Additionally, further work is needed to better understand the

Assessing uncertainties in land cover projections



Today's Talk

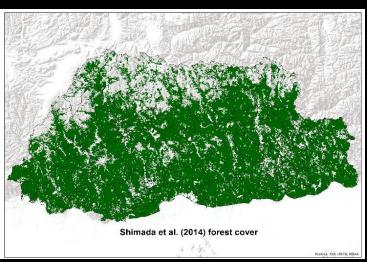
- Syntheses of existing satellite data for forest cove in SSEA
 - Global scale and country scale
- Understanding the causes of differences between different datasets
- Understanding the causes of agreements
- Improving the existing data some thoughts

Satellite Derived Forest Cover Datasets (≤30 Spatial Resolution)

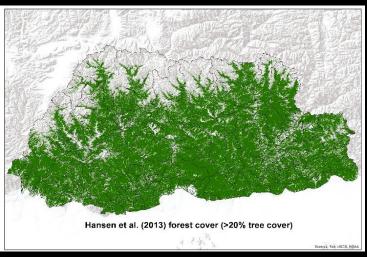
Data Source	Spatial Resolution (m)	Classification Algorithm	Forest Definition		
			Tree Density (> %)	Tree Height (m)	Reference
PALSAR	25	Decision Tree	10		Shimada et al. (2014)
Landsat, MODIS		Supervised classification (Decision Tree)	10	5	Sexton et al. (2013)
Landsat	~!	Supervised classification	10	5	Hansen et al. (2013)
Landsat, HJ-1	30	POK-based method	10		*Chen et al. (2015)

^{*} Available only for Nepal and Bhutan

Bhutan -Satellite Derived Forest Cover for 2010

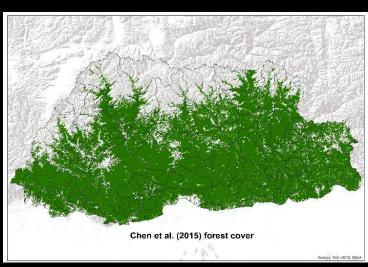


18,367 km² (48%)



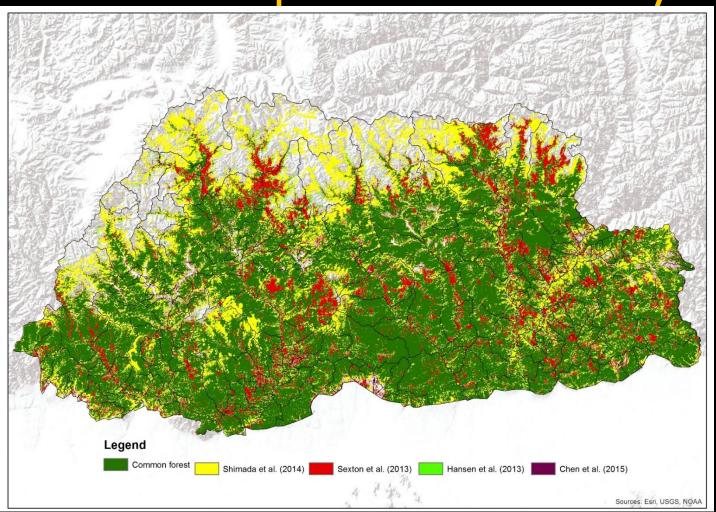
Official forest area is 27,053 km² (70 %) of the total land area of Bhutan (38,394 km²)

22,015 km² (57%)

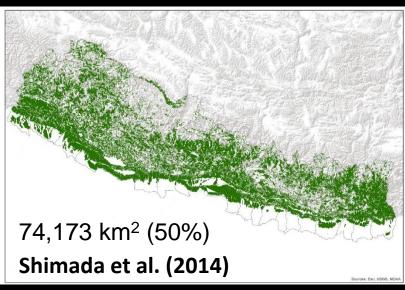


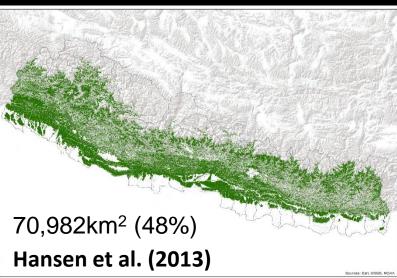
26,479 km² (70%)

Bhutan - Satellite Derived Forest Covers Spatial Consistency

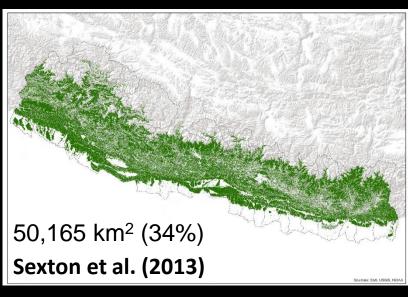


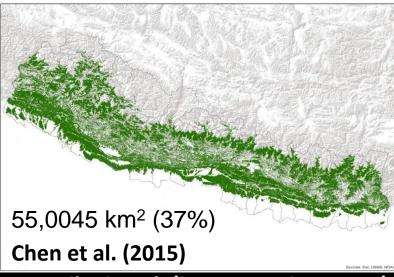
Nepal -Satellite Derived Forest Cover for 2010





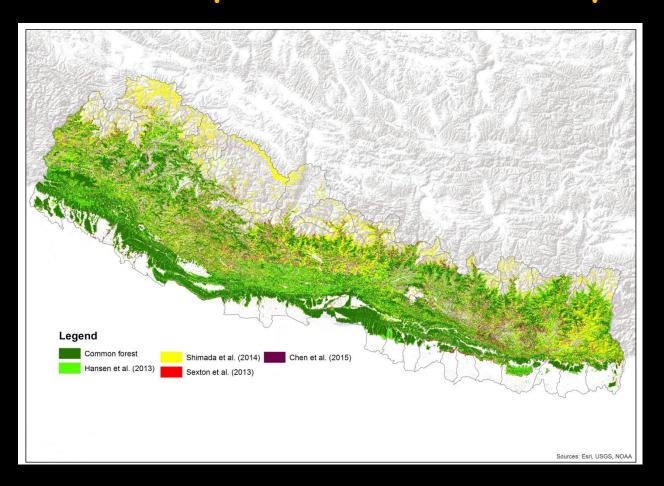
Official forest cover area is 40 % of the total land area of Nepal (147,181 km²)



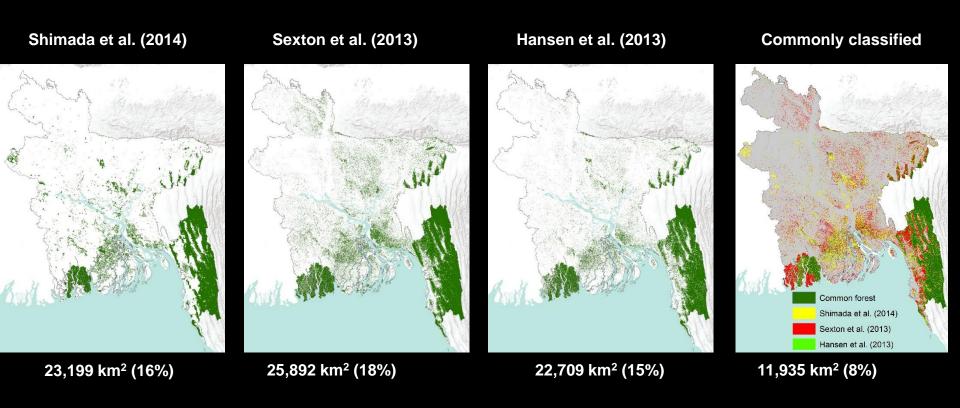


Gilani et al. (in preparation, 2017)

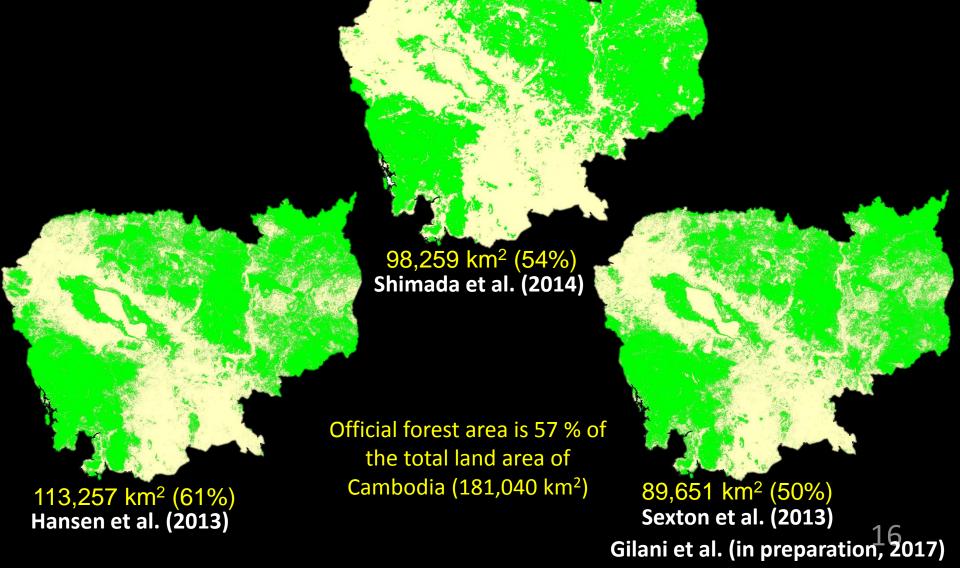
Nepal - Satellite Derived Forest Covers Spatial Consistency



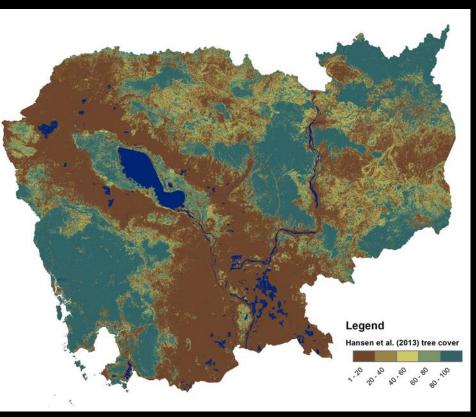
Bangladesh -Satellite Derived Forest Cover for 2010

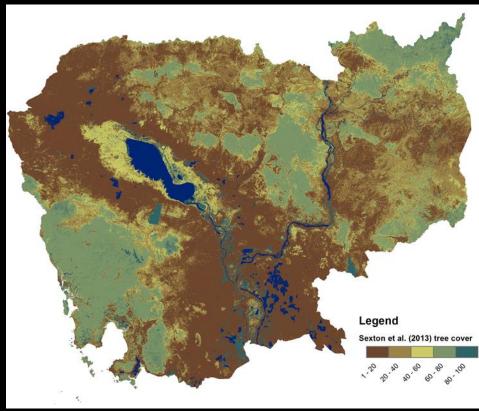


Cambodia - Satellite Derived Forest Covers for 2010



Cambodia - Satellite Derived Tree Covers for circa 2010



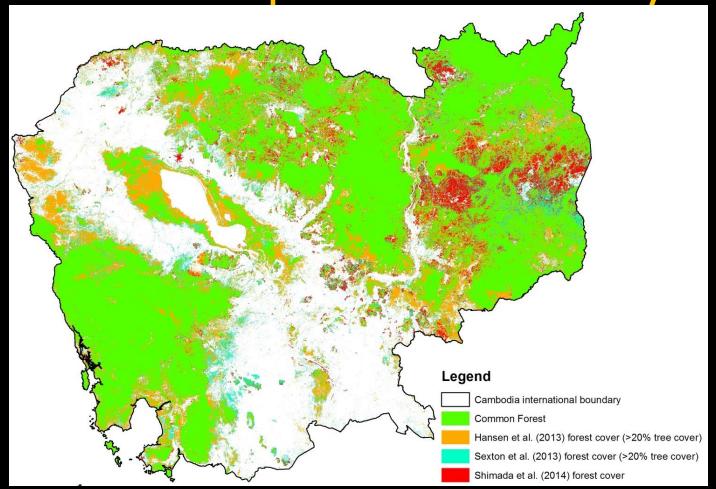


Hansen et al. (2013)

Sexton et al. (2013)

Gilani et al. (in preparation, 2017)

Cambodia - Satellite Derived Forest Covers Spatial Consistency



Uncommon forest area is about 26% of the total land area (181,040 km²)

Why are the Differences..

- Algorithms are trained based on limited ground data
- Forest definition varies
- Atmosphere and topographical effects are treated differently by the algorithms used
- Forest classification is mixed with other vegetation types;
 - Shrub and scrub lands mixed with forest class due to spectral response/signatures
- Limited ground data for the training and testing
- Post-processing (Smoothing filters, Minimum Mapping Units etc.)

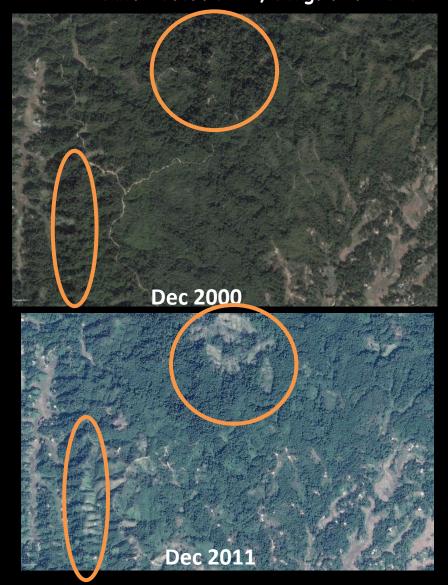
Why are the Agreements..

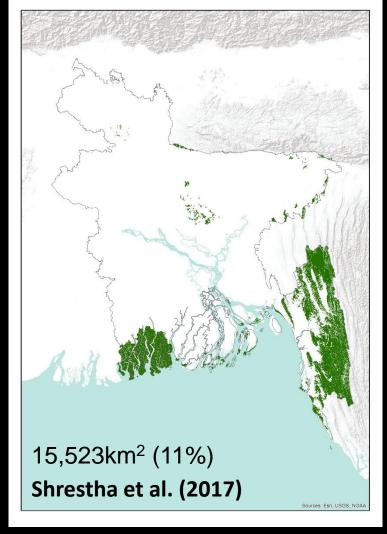
- Dense patches of the forests are easily detected and mapped, because the same or similar optical remote sensing datasets are used
- Lower tree density classes (<60%) are matching

Dynamics of LCLUC - Country Level Studies

Bangladesh - A Temporal Change Assessment and Forest Mapping

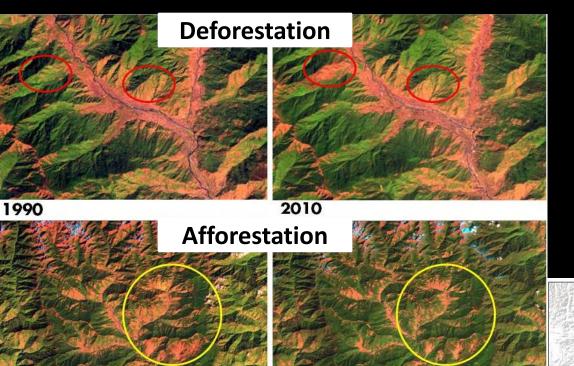
Lat. 23.399811°, Long. 92.018261°





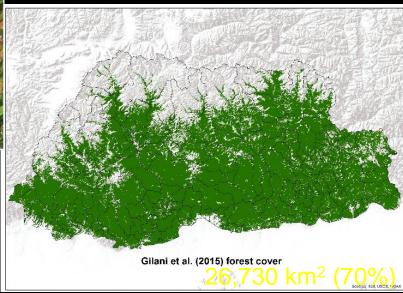
Selected reference points (Ground and Google Earth High Resolution Satellite Imagery - Validation

Bhutan - A Temporal Change Assessment and Forest Mapping



Time varying images were used to map forest cover changes

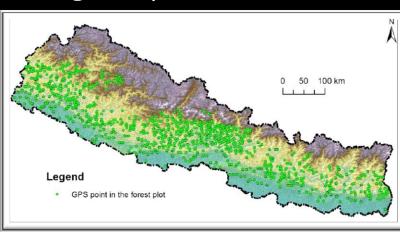
Forest cover and change maps were evaluated for the accuracy using Google Earth and ground based measurements



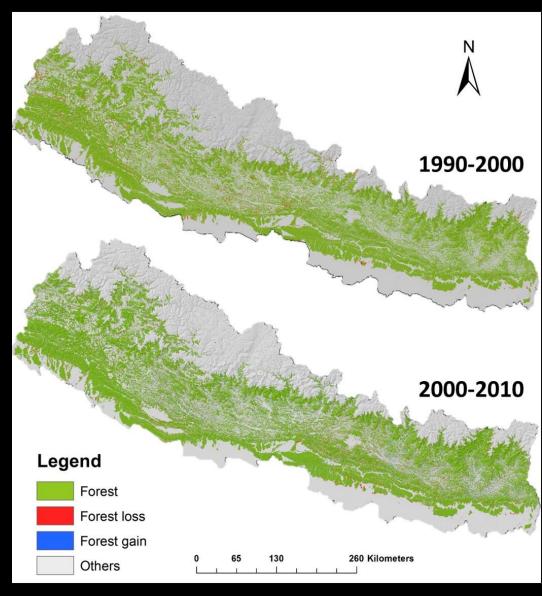
Gilani et al. (2015)

62,039 km² (42%) Uddin et al. (Unpublished)

1,646 reference points for the accuracy assessment and validation of forest cover and forest cover change maps



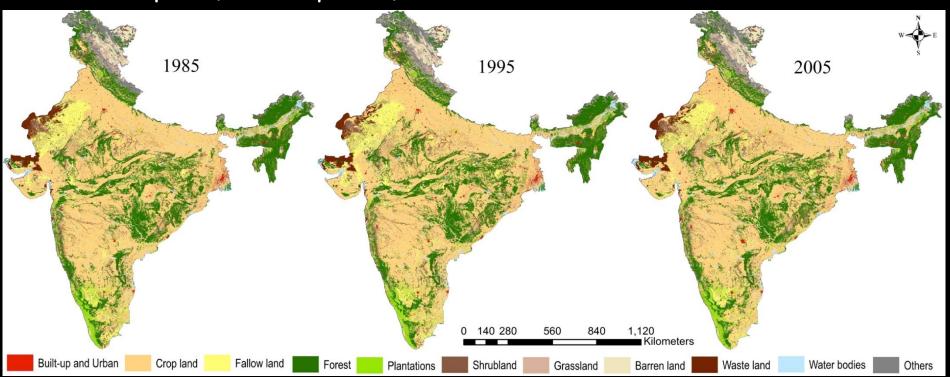
Nepal - A Temporal Change Assessment and Forest Mapping



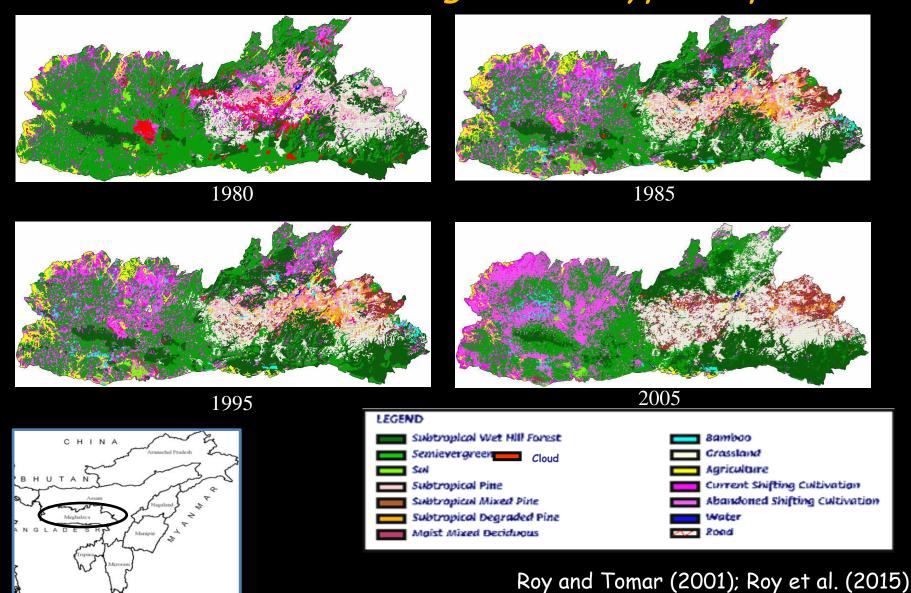
Gilani et al. (in preparation, 2017)4

Wall-to-wall Landsat Analysis for India

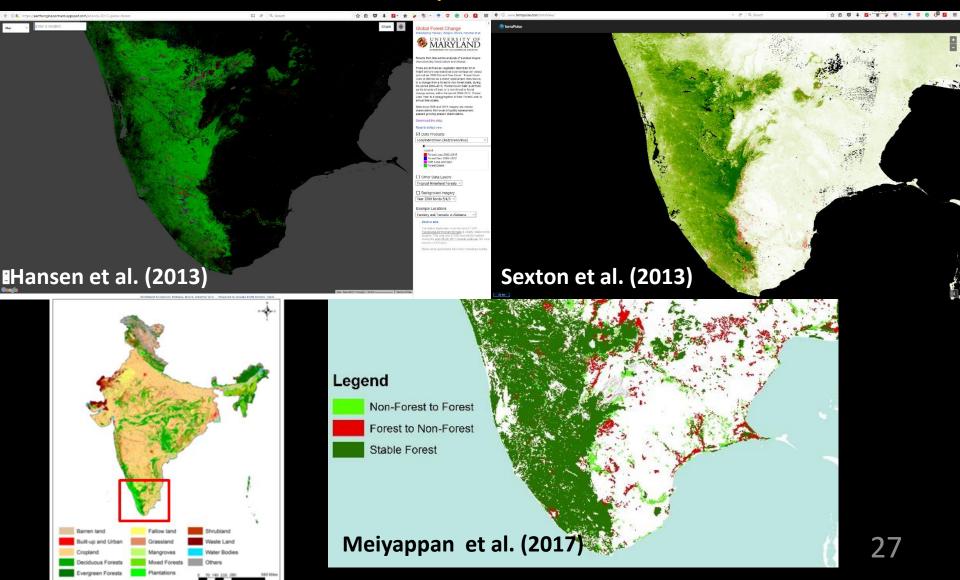
- Covers Longer Time Period: Decadal (1985-1995-2005)
- Uniform Classification Scheme: IGBP
- Patch to Patch Land Dynamics
- Field samples (>12000 points)



Forest Dynamics in Meghalaya -Satellite Derived Vegetation Type Maps



Forest cover change assessment (2000-2010) - An example from South India



Dynamics of LCLUC - Country Level Studies

- Quantified land-cover and change at country scale using time varying satellite images
 - Bhutan, Bangladesh, India
- Classified maps scene by scene
- Used sub-national scales relevant studies to understand the spatial existence/pattern of land/forest covers
- Used field samples validation data
- LCLUC linking with biophysical and socioeconomic datasets to understand the exact drivers and causes of changes
 - Bangladesh and India

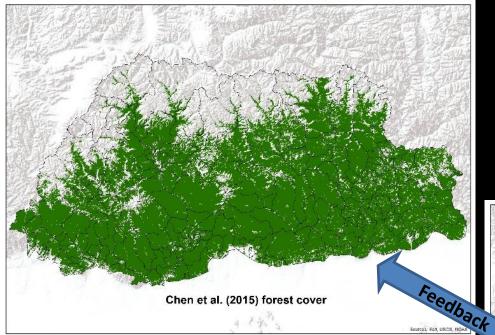
Improving the existing data - some thoughts

- Mapping algorithms should be designed evaluated using the climate, topography other conditions of the study regions
- Object based image classification Better than pixel based supervised classification, so results are matching with countries estimated areas
- Use of temporal data improves classification accuracy.
- Land cover change (including forests; not tree cover) improves the misclassified areas
- Share the data with others

The End

Extra Slides

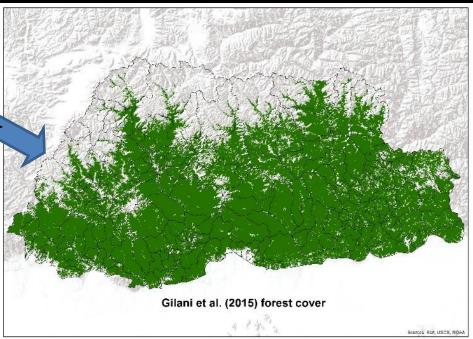
Feedback Mechanism Bhutan - 2010 Satellite Derived 26,479 km² (70%) Forest Cover



Estimated areas and spatial patterns are matching

Both (Chen and Gilani) used object based image classification technique

Chen et al. (2015) global scale produced land cover data was provided to ICIMOD (Gilani et al., 2015) for the validation 26,730 km² (70%)



Bangladesh - A Temporal Change Assessment of LCLUC 2000 2010 Agriculture Settlement Bare Soil Shrubland Forest Waterbody (Lakes, rivers, aquaculture) Mangrove