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SSEA Region

LCLUC
distribution
ih the study
S region

= Covers about 16% of earth's land surface

» Characterized by a long history of LCLUC activities
= The home for over 50% of the world's population

= Understand the LCLUC dynamics and drivers




Background

* Three principal objectives

— To understand the major LCLUC transition
activities in the study region.

— To advance our understanding of the causes
of LCLUC,

— To improve our understanding of the
historical effects of LCLUC dynamics on the

guantities and pathways of terrestrial carbon
and nitrogen fluxes.
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The terrestrial carbon budget of South and Southeast Asia
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*Positive values are the land sink of carbon
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Global Carbon Budget 2016
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Dynamics and determinants of land change in India: integrating

satellite data with village socioeconomics Reg Environ Change
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Assessing uncertainties in land cover projections
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the differences attributed to the scenario variations. The results lead us to conclude that a higher degree of uncer-
tainty exists in land use projections than currently included in climate or earth system projections. To account for land
use uncertainty, it is recommended to use a diverse set of models and approaches when assessing the potential

impacts of land cover change on future climate. Additionally, further work is needed to better understand the
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Today's Talk

» Syntheses of existing satellite data for
forest cove in SSEA

— Global scale and country scale

» Understanding the causes of
differences between different datasets

 Understanding the causes of
agreements

* Improving the existing data - some
thoughts



Satellite Derived Forest Cover
Datasets (<30 Spatial Resolution)
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Source m) Algorithm  pensity 1788 Helght
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PALSAR 25

Landsat,
MODIS

Landsat

Landsat,
HJ-1

Decision Tree 10
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classification
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Supervised
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POK-based
method
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* Available only for Nepal and Bhutan
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Shimada et al.
(2014)

Sexton et al.
(2013)

Hansen et al.
(2013)
*Chen et al.
(2015)




Bhutan -Satellite Derived Forest Cover

Official forest area
is 27,053 km?2 (70
%) of the total land
area of Bhutan
(38,394 km?)

Hansen et al. (2013) forest cover (>20% tree cover) Chen et al. (2015) forest cover

11 34,450 km? (90%) 26,479 km? (70%)



Bhutan - Satellite Derived Fores
Covers Spatial Consistenc

I common forest _ Shimada et al. (2014) [l sexton et al. 2013) Hansen et al. (2013) [l chen etal. 2015)

ces: Esri, USGS, NOAA

Common Forest area 11,884 km2 (31%)
Gilani et al. (in preparation, 2017)



Nepal -Satellite Derived Forest
Cover for 2010

74,173 km? (50%)
Shimada et al. (2014)

Official

70,982km? (48%)
Hansen et al. (2013)

forest cover
area is 40 %
of the total
land area of
Nepal
(147,181
km?)
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50,165 km? (34%)
Sexton et al. (2013)

55,0045 km? (37%)
Chen et al. (2015)

Gilani et al. (in preparation 201




Nepal - Satellite Derived Forest
Covers Spatial Consistency

Legend

I common forest Shimada et al. (2014) [JJl] chen et al. (2015)
Hansen etal. (2013) | sexton et al. (2013)

Sources: Esri

Common area: 26,261 Sqg. km (18%)
Gilani et al. (in preparation, 2017)



Bangladesh -Satellite Derived Forest
Cover for 2010

Shimada et al. (2014) Sexton et al. (2013) Hansen et al. (2013) Commonly classified

Shimada et al. (2014) %

I sexton etal. (2013)
Hansen et al. (2013)

23,199 km2 (16%) 25,892 km?2 (18%) 22,709 km2 (15%) 11,935 km2 (8%)

Shrestha et al.:l(§017)



Cambodia - Satellite Derived Forest
Covers for 20

98,259 km? (54%) _s
Shimada et al. (2014)

Official forest area is 57 % of »
: the total land area of ;
Hansen et al. (2013) Sexton et al. (2013)

Gilani et al. (in preparationl,§017)




Cambodia - Satellite Derived Tree
Covers for circa 2010

Legend : b S : o Legend

Hansen et al. (2013) tree cover p § ; Sexton et al. (2013) tree cover

Hansen et al. (2013) Sexton et al. (2013)

17 Gilani et al. (in preparation, 2017)



Cambodia - Satellite Derived Forest
Covers Spatial Consistenc

Legend

:] Cambodia international boundary
Common Forest
Hansen et al. (2013) forest cover (>20% tree cover)
Sexton et al. (2013) forest cover (>20% tree cover)

- Shimada et al. (2014) forest cover

Uncommon forest area is about 26% of the total land area
(181,040 km?)

Gilani et al. (in preparation, 20173
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Why are the Differences..

Algorithms are trained based on limited
ground data

Forest definition varies

Atmosphere and topographical effects are
treated differently by the algorithms used
Forest classification is mixed with other

vegetation types;
— Shrub and scrub lands mixed with forest class due
to spectral response/signatures

Limited ground data for the training and
testing

Post-processing (Smoothing filters, Minimum
Mapping Units etc.)



Why are the Agreements..

 Dense patches of the forests are easily
detected and mapped, because the same
or similar optical remote sensing
datasets are used

 Lower tree density classes (<60%) are
matching

A



Dynamics of LCLUC - Country Level Studies



Bangladesh - A Temporal Change
Assessment and Forest Mapping

Lat. 23.399811°, Long. 92.018261°

15,523km? (11%)
Shrestha et al. (2017)

Selected reference points (Ground
and Google Earth High Resolution
Satellite Imagery - Validation
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Bhutan - A Temporal Change
AssessmenT and Forest Mapping

/“H

For'es‘r cover and change maps
were evaluated for the accuracy
using Google Earth and ground
based measurements

Time varying images
were used to map
forest cover changes

Gilani et al. (2015) forest cover

Gilani et al. (2015)



Nepal - A Temporal Change
Assessment and Forest Mapping

62,039 km? (42%) )
Uddin et al. (Unpublished)

1,646 reference points for
the accuracy assessment
and validation of forest
cover and forest cover

change maps L . U 2000-2010

Legend

Forest

- Forest loss

- Forest gain
= 0 65 130 260 Kilometers
Others L I 1 1 | 1 I | J

Legend

Gilani et al. (in preparation, 20172}




Wall-to-wall Landsat Analysis for India

Covers Longer Time Period: Decadal (1985-1995-2005)
Uniform Classification Scheme: IGBP

Patch to Patch Land Dynamics
Field samples (>12000 points)

Y : 0 140 280 560 840 1,120 e
- Kilometers (

B suit-up and Urban Crop land Fallow land [JJJJij Forest Plantations [JJll Shrubland Grassland Barren land [JJJ Waste land Water bodies [l Others

Roy et al. (Remote Sensing/2015)



Forest Dynamics in Meghalaya -
Satellite Derived Vegetation Type Maps
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Roy and Tomar (2001); Roy et al. (2015)



Forest cover change assessment (2000-
le from South Indi

2010) - An examp
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Dynamics of LCLUC - Country Level Studies

* Quantified land-cover and change at country scale
using time varying satellite images
— Bhutan, Bangladesh, India

* Classified maps scene by scene

« Used sub-national scales relevant studies to
understand the spatial existence/pattern of
land/forest covers

+ Used field samples validation data

« LCLUC linking with biophysical and socioeconomic
datasets to understand the exact drivers and
causes of changes

— Bangladesh and India



Improving the existing data -
some thoughts

Mapping algorithms should be designhed
evaluated using the climate, topography other
conditions of the study regions

Object based image classification - Better than
pixel based supervised classification, so results
are matching with countries estimated areas

Use of temporal data improves classification
accuracy.

Land cover change (including forests; not tree
cover) improves the misclassified areas

Share the data with others
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The End
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Extra Slides
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Feedback Mechanism
Bhutan - 2010 Satellite Derived

Forest Cover

26,479 km? (70%

* Chen et al. (2015) global
scale produced land
cover data was provided
to ICIMOD (Gilani et
al., 2015) for the

validation
26,730 km? (70%)

Chen et al. (2015) forest cover

Estimated areas and spatial
patterns are matching

* Both (Chen and Gilani)
used object based image SR oL
CIGSSlfICGTlon TeChnlque Gilani et al. (2015) forest cover




Bangladesh - A Temporal Change
Assessment of LCLUC

Settlement
Shrubland
Waterbody (Lakes, rivers, &

Shrestha et al. (2017)



