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• Improved estimates of built-up area
were achieved from nighttime light.
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on estimating built-up area was
investigated.
⁎ Corresponding author at: 1405 S. Harrison, East Lansi
E-mail address: yangzuta@msu.edu (Z. Ouyang).

https://doi.org/10.1016/j.scitotenv.2018.08.015
0048-9697/© 2018 Published by Elsevier B.V.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 22 June 2018
Received in revised form 30 July 2018
Accepted 2 August 2018
Available online 04 August 2018

Editor: Jay Gan
Built-up area has become an important indicator for studying urban environments, butmapping built-up area at the
regional/global scale remains challenging due to the complexity of impervious surface features. Nighttime light data
(NTL) is one of themajor remote sensing data sources for regional/global built-up or impervious surfacemapping. A
single regression relationship between fractional built-up/impervious area andNTL or various indices derived based
on NTL and vegetation index (e.g., NDVI) data had been established in many previous studies. However, due to the
varying geographical, climatic, and socio-economic characteristics of cities, the same regression relationship may
vary significantly across cities. In this study, we examined the regression relationship between percentage of
built-up area (pBUA) and vegetation adjusted nighttime light urban index (VANUI) for 120 randomly selected cities
around theworld with a hierarchical hockey-stick regressionmodel. We found that there is a substantial variability
in the slope (0.658 ± 0.318), the threshold VANUI (−1.92 ± 0.769, log scale) after which the linear relationship
holds, and the coefficient of determination R2 (0.71 ± 0.14) among globally distributed cities. A small proportion
of this substantial variability can be attributed to socio-economic status (e.g., total population, GDP per capita)
and landscape structures (e.g., compactness and fragmentation). Due to these variations, our hierarchical model
or no-pooling model (i.e., fit each city individually) can significantly improve model prediction accuracy (17% in
terms of root mean squared error) over a complete-pooling model. We, however, recommend hierarchical models
as they can providemeaningful priors for future modeling under a Bayesian framework, and achieve higher predic-
tion accuracy than no-pooling models when sample size is small.
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1. Introduction

The United Nations has projected that two thirds of the global pop-
ulationwill live in cities by 2050. Urban sprawl has led to increasing en-
vironmental degradation of cities and their adjacent areas, such as air
pollution and urban heat islands, as well as an alarmingly increased so-
cial disparity in income, housing, and access to urban amenities such as
public green spaces, education and health care (Chen et al., 2016;
Estoque et al., 2017; Fan et al., 2017; Nassauer et al., 2014; Park et al.,
2017). Accurate delineation of urban land plays a fundamental role in
urban studies, such as quantifying urban sprawl, performing environ-
mental assessments, planning, etc. (Alberti, 2005; Wu, 2014). Hence,
timely mapping of urban lands at regional and global scales has consid-
erable significance for policy makers to make appropriate urban plan-
ning and policy decisions (Elvidge et al., 2007; Mertes et al., 2015;
Pesaresi et al., 2013).

Satellite images that record nighttime light (NTL) from the Defense
Meteorological Satellite Program's Operational Linescan System
(DMSP-OLS) are one of the main data sources for mapping urban land
in terms of built-up area or impervious surface area distribution, espe-
cially at regional and global scales (Elvidge et al., 2007; Li and Zhou,
2017; Zhang and Seto, 2011). Earlier studies have used the threshold-
based approach to extract regional distributions of built-up area (Liu
and Leung, 2015; Xiao et al., 2014), but the results carried high levels
of uncertainty because no single optimal threshold could be identified
for delineating built-up area from other land cover types across the
complex urban landscapes (Zhou et al., 2015b).More critically, the orig-
inal DMSP-OLS data has a spatial resolution of ~2.7 km and was
resampled to 1 km with a digital number (DN) of 0–63, indicating po-
tential concerns resulting frommixed-pixels and saturation of luminos-
ity. These potential problems would propagate the blooming effect (Li
and Zhou, 2017) and lead to overestimation of urban land, especially
in rapid transitional regions of urban-suburban complexes. Conse-
quently, NTL alone cannot provide accurate built-up area estimates. To
overcome these issues, several efforts have been made to integrate
DMSP-OLS with the Moderate Resolution Imaging Spectroradiometer
(MODIS), another source of coarse spatial resolution data (Angel et al.,
2016; Guo et al., 2017, 2015; Lu and Weng, 2006; Zhang et al., 2013),
to improve the accuracy and performance of built-up area mapping
from NTL.

MODIS vegetation index products can help distinguish built-up area
fromother non-vegetation covers (e.g., bare land andwater) in addition
to reducing the mixed-pixel problem (e.g., 250–1000 m spatial resolu-
tions) and resolving the data-saturation issue (e.g., using its 16-bit
data depth) that exists in DMSP-OLS NTL. Numerous studies have dem-
onstrated the effectiveness of integrating DMSP-OLS and MODIS (or
other similar products that provide vegetation information) in improv-
ing the performance of built-up/impervious area mapping at regional
and global scales (Angel et al., 2016; Guo et al., 2017, 2015; Li and
Zhou, 2017; Lu and Weng, 2006; Zhang et al., 2013). Lu and Weng
(2006), for example, pioneered a human settlement index (HSI) based
on DMSP-OLS and MODIS normalized difference vegetation index
(NDVI) data to estimate the settlement areas in south and east China.
Later, similar indices combining NTL data and other vegetation indices
(e.g., MODIS NDVI, or enhanced vegetation index-EVI, and SPOT NDVI,
etc.) were also proposed to improve the mapping performance (Cao
et al., 2009; Guo et al., 2017, 2015; Zhang et al., 2013; Zhuo et al., 2015).

The vegetation adjusted nighttime light urban index (VANUI) was
derived from the normalized DMSP-OLS NTL and MODIS NDVI data,
and was suggested as a better index than HSI in correlation to the
built environment (Zhang et al., 2013). Following this school of thought,
Zhuo et al. (2015) used the enhanced vegetation index (EVI) instead of
NDVI, and developed an EVI-adjusted nighttime light index (EANTLI) to
reduce the data saturation problem within the DMSP-OLS NTL data. A
large-scale impervious surface index (LISI) was also developed by com-
bining higher resolution (750m) NTL data fromDMSP-OSL (e.g., Visible
Infrared Imaging Radiometer Suite's Day/Night Band, VIIRS-DNB) with
MODIS NDVI (Guo et al., 2015) for the same purpose. Guo et al.
(2017) also integrated the normalized impervious surface index (NISI)
with DMSP-OLS NTL and MODIS NDVI in delineating impervious area.

The performances of mapping urban landscapes depend on the
strength of the linear relationships between impervious/built-up area
and the NTL-based index (e.g., HSI, VANUI, EANTLI, LISI, or NISI) at the
pixel level. Linear regressions have been used to predict impervious/
built-up area from the aforementioned indices at the city and regional
level (Guo et al., 2017, 2015; Lu andWeng, 2006). Here a common pit-
fall in previous studies is that the regression models were trained by a
pooled random sample from multiple cities by assuming that a single,
universal regression relationship between a preferred index and
impervious/built-up area exists. This approach ignores the potentially
different relationships among cities. In reality, the empirical relation-
ships may vary significantly by city because of unique local settings.
Lighting systems between developed and developing countriesmay dif-
fer significantly because their economic status may prevent or promote
installations of lighting in built-up environments; and national/regional
policies and cultures may yield different usages of nighttime lights. For
instance, Germany does not usually light its autobahns, but the U.S. illu-
minates its city roads and highways intensively (Kyba et al., 2014). Con-
sequently, this one-model-fits-all strategy in mapping impervious/
built-up area can potentially produce very different results when ap-
plied across globally/regionally distributed cities. Altogether, the same
empirical relationship might perform better for some cities than for
others. Ignoring the potential differences among cities will lead to sub-
stantial over- or under-estimations of impervious/built-up area both lo-
cally and regionally. While some studies have already showed that the
relationship between urban land and NTL (or an index based on NTL)
differs dramatically across cities even within a single country (Gao
et al., 2015), and across countries (Liu and Leung, 2015; Zhou et al.,
2015a), there has been no single study that has specifically examined
these variations yet (Bennett and Smith, 2017).

Clearly, it is crucial to include quantitative information on inter-city
differences across the global range of socioeconomic status, climatic
conditions, geographic settings, etc., as well as intra-city characteristics
(e.g., landscape structure) in model development. As built-up and im-
pervious area are similar quantities that are widely used for urban
land and human settlementmapping, we selected built-up area (simply
because we have training data in the form of built-up area), to demon-
strate the needs of hierarchical modeling to improve the accuracy of es-
timates from NTL. Specifically, we set our study objectives to:
1) estimate the magnitude of the variation of the relationship between
built-up area and a NTL-based index among globally distributed cities;
2) explore the potential contributions of within-city characteristics to
the variation; and more importantly, 3) improve the built-up area esti-
mates through Bayesian hierarchical modeling (BHM) through consid-
ering local settings. In pursuing these objectives, we hypothesize that
the same regression model for predicting built-up area from NTL-
based indices will be statistically different among cities, but incorporat-
ing these differences intomodelingwill enhance the performance in de-
lineating built-up area.

2. Methods and materials

2.1. The global sample of cities

We focused on the global variation of the relationships between the
percentage of built-up area (pBUA) andNTL-based indices. In this study,
we used the global sample of 120 cities from Angel et al. (2005) (Fig. 1).
These 120 cities are a stratified random sample drawn from 3943 dis-
tinct metropolitan areas that had populations in excess of 100,000 in
2000. Angel et al. (2005) selected these cities by considering three im-
portant stratification characteristics: (1) the geographical region in
which the city is located; (2) the city size; and (3) the level of economic



Fig. 1. The global distribution of the 120 cities by region, population size, andGDP per capita (GDPpc) used in this study. These cities were the same ones as those in Angel et al. (2005).We
updated the database to show the GDPpc (adjusted PPP in 1995) at the city level for 2000. Note that regions are defined by grouping countries and Russia is classified as a European
country.
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development of the country in which the city is located, measured by
Gross National Product per capita (GNPpc). Angel et al. (2005) provided
a detailed rationale for the selection process.

2.2. Data

Among the widely used NTL indices, we used VANUI in this study to
establish its relationshipwith pBUAbecause of its easy computation and
high correlation with pBUA. A global VANUI image in 2000 was pro-
duced following Zhang et al. (2013) using the composite F14 DMSP/
OLS image, and the 8-day 500-m MODIS NDVI products:

VANUI ¼ 1−NDVIð Þ � NTL ð1Þ

where NDVI is the maximum NDVI extracted from the 500-m MODIS
NDVI composites, and NTL is the normalized NTL. In this study, we did
not use the mean annual NDVI value (e.g., Zhang and Seto (2011)) be-
cause the maximum NDVI can better reflect the distributions of green
vegetation and eliminate the effects caused by cloud and shadow con-
tamination that are common in the time-series MODIS NDVI data
Table 1
Socioeconomic and bio-geophysical variables collected for each of the 120 cities for their influe
from nominal value to PPP 1995 $ value to ensure their compatibility among different cities.

Name Description

Population The total population
GDPpc GDP per capita
BUA The built-up area
BUA density The built-up area per person
Openness Fragmentation
Proximity An index to present compactness
Cohesion An index to present compactness
Precipitation Total annual precipitation
Temperature Annual mean air temperature
Elevation Mean elevation above sea
Latitude Latitude
Longitude Longitude
(Guo et al., 2017). The pBUA data at each 1000-m resolution pixel
were calculated based on built-up area classification from Landsat im-
ages. Angel et al. (2005) produced the 30-m land cover maps for all of
the 120 cities based on Landsat images by classifying a city into three
classes: urban built-up land, water, and other lands. Each city was di-
vided into 1 × 1 km grids that geographically match the pixels in the
VANUI layers; pBUA of each grid was computed based on the 30-m
urban built-up maps. All 1 × 1 km pixels with VANUI of N0 were
retained as our data sample for modeling, yielding a total of 541,696
pixels at 1 km resolution from the 120 cities for Bayesian hierarchical
modeling (Section 2.5).

To identify the significant socioeconomic and geophysical factors
that might affect the city-level pBUA-VANUI relationships, we collected
other ancillary data at the city level (Table 1). These data include vari-
ables representing climatic conditions and biomes information
(i.e., precipitation, temperate, and elevation), geographical locations
(i.e., latitude, longitude), landscape structures (i.e., BUA, BUA density,
openness, proximity, and cohesion), and socioeconomic conditions
(i.e., populations, GDP per capita – GDPpc). Openness, proximity, and co-
hesion are landscape metrics describing the landscape structure of a city.
nces in pBUA-VANUI relationships through hierarchical modeling. GDPpc were converted

Unit Category

X 1000 Socioeconomic conditions
PPP 1995 $ Socioeconomic conditions
m2 Landscape structures
m2/person Landscape structures
1 Landscape structures
1 Landscape structures
1 Landscape structures
mm Climatic and biome zones
C Climatic and biome zones
m Climatic and biome zones
Degree Geographic locations
Degree Geographic locations
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Openness measures fragmentation attributes of cities, which is the aver-
age percentage of non-ISA area in a 1-km diameter circle surrounding
each pixel in the city (Angel et al., 2005; Burchfield et al., 2006). Proximity
and cohesion are two correlated indices that describe the compactness of
a city. Proximity is the ratio of the average straight-line distance of all
points in an equal area circle to city hall to the average straight-line dis-
tance of all points in the urban extent to city hall; cohesion is the ratio
of the average straight-line distance of all points to all other points in an
equal area circle to the average straight-line distance of all points to all
other points in the urban extent (Angel et al., 2016). The equal area circle
is a circle with equal land area to the urban ISA extent that is centered at
city hall. Population andGDPpcwere collected from theAtlas of UrbanEx-
pansion (http://www.atlasofurbanexpansion.org/), the Bureaus of Na-
tional Statistical Office, and the World Data Atlas (https://knoema.com).
While we successfully collected population data for all 120 cities, we did
not find GDPpc data for a few cities. For these cities (e.g., Ansan and
Chonan in South Korea, Medan in Indonesia, Kampala in Uganda, and Ta-
coma in theUnited States of America),we insteadutilized provincial/state
statistics of GDPpc as approximated values. Precipitation (annual sum)
and temperature (annual mean) were collected from cities' climatic sta-
tions. Elevation was derived from the SRTM 30 m DEM (https://www2.
jpl.nasa.gov/srtm/).
Fig. 2. Exploratory Loess analysis shows that a hockey-stick model can properly describe the
nighttime light urban index (VANUI). Only four selected cities were presented in this figure fo
2.3. Exploratory analysis

Previous studies have suggested that a linear regression relationship
exists between a NTL-based index (e.g., HSI and VANUI) and the per-
centage of impervious/built-up area (Guo et al., 2017; Lu and Weng,
2006; Zhang and Seto, 2011). A log transformation of the index would
further strengthen the empirical models (Lu andWeng, 2006), because
the distributions of these indices are slightly skewed. Therefore, natural
log transformed VANUI was applied in this study. We fitted Loess lines
(Cleveland, 1993) to data points from individual cities to explore thepo-
tential relationships (Fig. 2). Loess analysis suggested that a hockey-
stick model (e.g., piecewise/segmented linear model) (Qian, 2016)
best fit the data. The hockey-stickmodel is also conceptually reasonable
because pixels that include negligible built-up area might be illumi-
nated by adjacent urban light due to the blooming effects, suggesting
that a strong pBUA-VANUI relationshipmay only appear above a thresh-
old of VANUI.

2.4. Data grouping

Data grouping is different and independent from stratified sampling
of cities. The stratification for city selection conducted by Angel et al.
changes in the percentage of impervious surface area (pBUA) with vegetation adjusted
r demonstration purposes.

http://www.atlasofurbanexpansion.org
https://knoema.com
https://www2.jpl.nasa.gov/srtm
https://www2.jpl.nasa.gov/srtm
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(2005) was to ensure that the 120 cities were representative of all glob-
ally distributed cities. Because our emphasis is on the unique setting of
each city, we grouped our data (541,696 pixels) by cities to be consis-
tent with our model structure (see Section 2.5, Hierarchical Modeling),
i.e., each pixel is labeled to belong to the city where it was sampled.
Therefore, we have in total 120 groups (cities).

2.5. Hierarchical modeling

Our exploratory analyses suggest that a simple linear regression is
inadequate to model the relationship between pBUA and VANUI. This
deficiency also appeared in previous studies that applied a simple linear
regression. For example, Lu andWeng (2006) (i.e., the residuals, Fig. 9)
found two distinct values of the regression slope, which is in contrast to
those (i.e., Fig. 1) of Qian (2014). A similar phenomenonwas also appar-
ent in Figure 5 of Guo et al. (2017). Based on our exploratory analyses
and the residual assessments of the above referenced papers, a
hockey-stick model seems more appropriate, which can be expressed
as:

yi ¼ α þ β þ δ � I xi−ϕð Þ½ � xi−ϕð Þ þ ε ð2Þ

where α is the intercept of the first line segment, β is the slope of the
first line segment, δ is the difference in slope between the first and sec-
ond line segment,ϕ is the threshold valuewhere the line slope changes,
ε is the model residuals, and I is a function defined as:

I zð Þ ¼ 0; z≤0
1; zN0

�
ð3Þ

pBUA is almost invariable to VANUI when it is less than ϕ (Fig. 2).
Even though there is a small rate of change of pBUA with VANUI when
it is bϕ, such a level of change is of no practical importance. Hence, we
forced β to zero (i.e., there exists no linear relationship between pBUA
and VANUIwhen VANUI is less than ϕ). As a result, our model is simpli-
fied as:

yi ¼ α þ δ � I xi−ϕð Þ � xi−ϕð Þ þ ε ð4Þ

An advantage of this hockey-stickmodel is its generalization for cov-
ering all previousmodels. For example, the hockey-stickmodel (Eq. (2))
is the same as a linearmodelwhen δ=0orϕ approaches theminimum
or maximum VANUI.

Previous studies have assumed that the same set of model coeffi-
cients could be applied for a group of cities (Guo et al., 2017; Lu and
Weng, 2006). This approach, also known as “complete pooling”, implies
that data from different cities are true replicates. As argued in previous
text, however, the pBUA-VANUI relationship may vary because many
factors affecting the relationship may exist and can operate at different
spatial scales (Qian et al., 2010; Yun and Qian, 2015). In addition, data
pixels from different cities should not be treated as true replicates be-
cause they are not necessarily governed by the same processes. On the
other hand, if we treat all cities independently (no-pooling method),
there would be an oversight that pBUA and VANUI data from one city
may partially represent another. For example, two pixels with the
same VANUI values from two different cities are very likely to have sim-
ilar pBUA. Furthermore, no-poolingmight have limited statistical power
for groups with a small sample size (Shelton et al., 2012; Yun and Qian,
2015). These weaknesses associated with the complete-pooling, or no-
pooling models, can be overcome by applying Bayesian hierarchical
modeling (BHM) (Gelman and Hill, 2007). A multilevel/hierarchical
model treats sampleswithin a group (e.g., city) as replicates and adjusts
the estimatedmodel coefficients based on data from a specific group by
shrinking them towards the overall mean of the same coefficients for all
groups. In BHM, the overall means are regarded as a common prior for
all cities. This adjustment is commonly known as shrinkage estimation,
with a shrinkage estimator being superior (in terms of amodel's predic-
tive accuracy) to itsmaximum likelihood (unshrunk) counterpart (Qian
et al., 2015a, 2015b).

A complete-pooling model uses all pixel samples from all cities in
Eq. (4), while a no-poolingmodel will use data from each city indepen-
dently resulting in a city-specific model. In the hierarchical model,
model coefficients are city-specific, and their shared characteristics are
reflected by a common prior imposed on these coefficients:

yij ¼ aj þ δ jI xij−ϕ j

� �
� xij−ϕ j

� �
þ ϵij ð5aÞ

α j
δ j
ϕ j

0
@

1
A � MVN

μ0
μ1
μ2

0
@

1
A;

X2
4

3
5 ð5bÞ

where ij represents the ith pixel from the jth city. The city-specific coef-
ficients aj, δj, andϕjwere assumed to share a commonprior distribution,
i.e., a multi-variate normal (MVN) distribution with mean of [μ0, μ1, μ2],
and a variance-covariance matrix ∑, where the covariance matrix is
formed by the variance σ0, σ1, and σ2, and the paired correlations be-
tween aj, δj, and ϕj.

This model (Eqs. (5a), (5b)) accounts for within-group (i.e., pixels
within a city) and among-group variations simultaneously, which al-
lows us to investigate the global variations of the pBUA-VANUI relation-
ships. With this hierarchical structure, pixels within a city are assumed
as true replicates and the empirical coefficients are city-specific. These
city-specific coefficients are further assumed to be exchangeable and
share the same prior distribution (Eq. (5b)). The model was fitted
using the Markov Chain Monte Carlo (MCMC) simulation in R package
RStan using a Bayesian approach. Computed sources from the High Per-
formance Computing Center (HPCC) at Michigan State University were
used to run 20 parallel MCMC chains each at 10,000 iterations with
5000 for warming. The Gelman-Rubin diagnostic processes (Gelman
and Rubin, 1992) and visual check of parallel chains were performed
to ensure convergence of parameters and the chains.

2.6. Quantifying the differences among cities

We did not include any group-level predictors for aj, δj, and ϕj in
model (Eqs. (5a), (5b)). Instead,we only applied the exchangeability as-
sumption (i.e., aj, δj, andϕj vary around themeanof μ0, μ1, and μ2). This is
a reasonable way to express our ignorance about the variation of city-
specific model coefficients: the coefficients vary by city but are other-
wise uncertain (because we do not know a priori whether the slope δj
in one city is higher/lower than another city and why). Therefore, we
performed a post-model analysis to explore the driving forces on varia-
tion of city-specific model coefficients.

Because the slope of the first segment was forced to zero and the in-
tercept (aj) only represents the background noise of pBUA in our
hockey-stick models, we focused on the discussion of δj as the slope of
the second segment (hence why we did not report the aj for post-
analysis). Meanwhile, we were also interested in the performances of
the same hockey-stick model among cities. In this regard, we used the
widely used r-square (Rj2) as the goodness of fit criteria in assessing
model performance. Since BHMdoes not provide R2 estimation directly,
we computed R2 by: (1) predicting pBUA based on the posterior distri-
bution of aj, δj, and ϕj, and (2) comparing predicted values with ob-
served pBUA.

The relationship between city-specific model coefficients (δj and ϕj)
and the city-specific Rj2, and the city level variables (Table 1)were inves-
tigated through correlation analysis and random forests, aiming to find
any possible regulators for among-city variation in the pBUA-VANUI re-
lationships. Random forests were applied because of its capability in
capturing non-linear features through both regression and classification
(Bento et al., 2013). We checked the changes in mean accuracy (out-of-
bag errors) and Gini (node impurity of variables) to identify the most
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important variables in the random forests. More specifically, we com-
puted the mean decreases in the accuracy and Gini when the variable
was randomly permuted. Population, GDPpc, BUA, and BUA density ap-
peared log-normally distributed, so they were log-transformed.

2.7. Model comparisons

We first compared the predictive accuracy among different model
structures for all 120 cities. The no-pooling model (e.g., Eq. (4) applied
to samples from each city separately) and the complete-pooling
model (e.g., Eq. (4) applied to the pooled sample from all cities) were
also developed with the Bayesian approach for the purpose of compar-
ison. We first compared the cross-validated RMSE (root mean square
error) among the three model structures, with half of the total dataset
to train the model and the other half for validation. While RMSE has
been widely used as a conventional residual-based model assessment,
Fig. 3. The estimated mean (black dots) and the 90% credible intervals (black solid horizontal lin
Bayesian hierarchical model (BHM). The shaded areas are the overall mean (black dotted vertic
scribing the distribution of δ, see Section 2.5 for more details).
it is not appropriate for the comparisons of Bayesian models, especially
for BHM (Qian et al., 2015b). We therefore also compared the
Watanabe-Akaike Information Criterion (WAIC) (Watanabe, 2010),
which is a fully Bayesian implementation of information theoretical
methods in assessing a model's predictive accuracy (Gelman et al.,
2014). WAIC has also been regarded as a measure of deviance and is
proportional to the mean squared error when the response variable is
normal (Qian et al., 2015b). Because of the computational intensity re-
quired for calculating WAIC, the current implementation of WAIC in R
cannot process data of the size of our study. As a result,WAICwas calcu-
lated using a subset of cities. We selected cities in China and the United
States (because the two countries have the most cities in our city sam-
ple) as demonstrative cases. We made the model comparisons using
WAIC among the BHM, the no-pooling model, and the complete-
pooling model for these two sets of cities. To reduce the overwhelming
computation time, we further reduced the data size by randomly
es) of the slope δ for the second segment of the hockey-stickmodel in 120 cities based on
al line) ± standard deviation (i.e., μ1 ± σ1, where μ1 and σ1 are the hyper parameters de-
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sampling up to 50 pixels per city (i.e., a small sample) and up to 800
pixels per city (i.e., a large sample) for these two sets of cities.

3. Results

3.1. The variations among cities

While the same hockey-stick model was successfully developed for
each city, the model coefficients varied greatly among the 120 cities.
The slope (δ) varied from a low value of 0.23 for Zhengzhou, China, to
a high value of 2.56 for Kuwait City, Kuwait (Fig. 3); the VANUI thresh-
old (ϕ) was the lowest for Ibadan, Nigeria (−4.73) and the highest
(−0.30) for Kuwait City, Kuwait (Fig. 4). Most of the cities had a very
narrow 90% credible interval for both the slope and the threshold, sug-
gesting a precise estimate. However, a few cities had larger uncer-
tainties associated with the mean estimates, including Ahvaz, Anqing,
Fig. 4. The estimatedmean (black dots) and the 90% credible intervals (black solid horizontal li
model (BHM). The shaded areas are the overallmean (black dottedvertical line)± standarddev
δ, see Section 2.5 for more details).
Aswan, Casablanca, Chinju, Dhaka, Leshan, Marrakech, Leipzig, Kuwait
City, Rajshahi, Saidpur, Shimkent, Tebessa, etc. (Figs. 3 and 4). The
slope and the VANUI threshold were statistically different between
manypairs of cities evenwhen theywere from the same regionor coun-
try; for example, Zhengzhou and Yiyang from China, and Los Angeles
andMinneapolis from theUnited States. Statistical difference here is de-
fined as the 90% credible intervals of two cities that do not overlap,
which corresponds to p = 0.1. The slopes of most cities were inside of
one standard deviation of the overall mean, with a few exceptions
(Ahvaz, Jaipur, Los Angeles, Madrid, Teheran, Tel Aviv, Thessaloniki,
and Tijuana). These cities are either located in the deserts & xeric
shrublands or in the Mediterranean forests, woodlands and scrub
biome where climate is dry, which may relate to the small ranges of
NDVI due to sparse vegetation. The VANUI threshold seems more vari-
able than the slope, withmore cities falling outside the one standard de-
viation of themean. These cities with the lowest VANUI threshold were
nes) of the VANUI threshold (ϕ) for the hockey-tick model based on Bayesian hierarchical
iation (i.e., μ2±σ2, where μ2 andσ2 are thehyper parameters describing thedistribution of
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from low- or lower-middle-income countries/regions in Africa
(e.g., Banjul of Gambia, Ibadan of Nigeria, Kampala of Uganda, andMar-
rakech of Morocco) and Asia (e.g., Bacolod of Philippines, Palembang of
Indonesia, and Zhengzhou, Yulin, Yiyang that located in provinces of
China with laggard economy). Cities with the highest VAUNI thresholds
were observed from high-income countries (e.g., Kuwait City, Madrid,
and Los Angeles), but could also be found in populous cities from
lower-and upper-middle-income countries (e.g., Ahvaz, Aswan,
Teheran etc.). In sum, most cities had their model coefficients close to
the overall means, but there were a few exceptions with values that
are extremely lower or higher than the overall mean. Note that shrink-
age effect of a hierarchical model automatically corrects the multiple
comparison problem (Gelman et al., 2012).

The goodness of fit also varied among the cities (Fig. 5). The highest
R2 (0.93) was found for Sao Paulo and the lowest (0.23) for Aswan. The
hockey-stick model performed reasonably well for most cities, with R2

falling between 0.70 and 0.90. A few cities had superior fit, with R2 of
N0.90, while a few cities had R2 of b0.60.

The hyper-parameters produced in our hierarchical model indicated
that, for a random city, the relationship between pBUA and VANUI could
be modeled as:

pBUAi ¼ N μ1;σ1ð Þ � I VANUIi−N μ2;σ2ð Þð Þ � VANUIi−N μ2;σ2ð Þð Þ ð6Þ

The parameters μ1, μ2, σ1, and σ2 are treated as random so that they
also follow certain distributions (Fig. 6), which indicates their uncer-
tainty. An advantage of Bayesianmodeling is that it can use these distri-
butions as new priors for future modeling to fully account for the
uncertainties at different levels. The mean values of 0.658, −1.920,
0.318, and 0.769 for μ1, μ2, σ1, and σ2, respectively, can be used if one
wants to treat them as fixed parameters as an frequentist.

3.2. The Influences of urban settings

We used post-model analysis to investigate the potential regulators
of city-level settings on the pBUA-VANUI relationships. There were no
highly correlated linear regulators for the slope coefficients δ (Fig. 7).
Population, GDPpc, and openness explained a small variation of δ (r2
Fig. 5.The variation of the hockey-stickmodel performance among120 global cities. The coeffici
grouping countries and Russia is classified as a European country.
= 0.06, 0.05, and 0.05, respectively) (note that we use r2 to differ
from the R2 of the hockey-stick models). If the two cities with the
highest δ (i.e., outliers) were excluded, population, GDPpc, and open-
ness explained more variation of δ (r2 = 0.12, 0.06, and 0.10, respec-
tively), but still a small proportion. Other variables were not
statistically significantly correlated with δ. We found that population,
GDPpc, and precipitation can linearly explain a small proportion of the
ϕ variation (r2 = 0.11, 0.09, and 0.09, respectively) (Fig. 8). The good-
ness of fit (R2) of hockey-stick models, however, was correlated with
many factors (Fig. 9). Total BUA, BUA density, proximity, cohesion
were all significantly correlated with R2, but explained a small part of
the total variation (Fig. 9). Remarkably, cohesion and openness alone
can each explain N20% of the total variation in R2 among the 120 cities
(Fig. 9).

The resulting random forests models, which include potential linear
and non-linear effects, explained ~7.7% of the variance for the slope δ,
~32.7% for the VANUI threshold (ϕ), and 29.9% for the goodness of fit
(R2). The city-specific setting variables played different roles in
predicting our hockey-stick model's coefficients and R2. Openness,
proximity, and cohesion remained the most significant variables in
predicting R2 (Fig. 10). Population, GDPpc, and precipitation were still
the most important variables in predicting the VANUI threshold (ϕ)
(Fig. 10), which were consistent with those based on linear regression
analysis. Population remained themost important variable in predicting
the change in δ, which was the same to the linear regression analysis
(Fig. 10). Other variables, including GDPpc, openness, and precipitation,
appeared marginally important, but it is difficult to quantify which one
has the more important influence according to decreases on both accu-
racy and Gini (Fig. 10). Overall, the variation in coefficients and good-
ness of fit of the 120 hockey-stick models were not well explained by
any particular city-level predictors, linearly and nonlinearly.

3.3. Accuracy of the models

The cross-validated RMSE valueswere the same (0.126) for the hier-
archical model and the no-pooling model, but significantly lower than
that of the complete-pooling model (0.152), demonstrating an im-
proved prediction accuracy of 17% (Table 2). For sub-datasets of China
ent of determination (R2)wasused as quantitative criteria. Note that regions are definedby



Fig. 6. The posterior distributions of model hyper parameters based on MCMC (100,000 sampling with 50,000 warming up). The black dashed-lines show the mean values; the shaded
areas show the 90% credible intervals. μ1 is the mean slope for the second segment of the hockey-stick model for all cities; and μ2 is the mean threshold VANUI for the hockey-stick
model for all cities. σ1 and σ2 are the standard deviations of μ1 and μ2.
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and the United States, WAIC from the hierarchical model and the no-
pooling model was also significantly lower (i.e., higher accuracy) than
those of the complete-pooling models (Table 2). While the WAIC was
similar between the hierarchical model and the no-pooling model,
BHM achieved slightly lower values when the sample size was small
(Table 2).

4. Discussion

4.1. Variation of pBUA-VANUI relationships

The pBUA-VANUI relationships varied greatly among globally dis-
tributed cities (Figs. 4, 5, and 6), suggesting that global and regional de-
lineations of pBUA using NTL need to be city-specific. The empirical
coefficients from the same hockey-stick model were statistically differ-
ent among most cities, indicating that pixels from different cities could
not be regarded as exchangeable. The overall advantage of a universal
model is that it can be readily applied for all cities. Its disadvantage
meanwhile is a lowered local accuracy that may arise from unique set-
tings (e.g., covariates that affect the pBUA-VANUI relationships) of a
local city (Table 2). Supposed that we had used the mean slope
(i.e., 0.658) to estimate the pBUA in Zhengzhou, China, and Mexico
City, Mexico with VANUI N−1.92, the pBUA of these pixels in Zheng-
zhou would be greatly overestimated (by ~180%) while in Mexico
theywould be underestimated (by ~32%). Consequently, while previous
studies (Elvidge et al., 2007; Guo et al., 2017, 2015; Lu andWeng, 2006)
achieved good results of regional/global mapping of BUA or impervious
area fromNTLdata byusing a universalmodel trained frompooled sam-
ples, there is still room to improve both the overall and local accuracy by
applying BHM. Our results showed that it may increase up to 17% in
terms of RMSE globally by considering the unique pBUA-VAUNI rela-
tionship for each city.

The variation of pBUA-VANUI relationships among cities, however, is
not well regulated by any city-level variables (Figs. 7–9). This implies
that there are apparent variations that we already know of, but that
we cannot predict. The population size can explain a small proportion
of δ and ϕ with a lognormal regression (6% and 11%, respectively). A
larger population is associated with a larger slope, suggesting cities
with a larger population size tend to expand more BUA for the same
amount increase of VANUI. This is in consistence with the additive and



Fig. 7.The linear or log-linear regression relationships between themodel coefficient slope (δ) and the socioeconomic, climatic, geographic, and landscape structure variables based on120
random cities.
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positive effects of population to the pBUA-NTL relationship (Elvidge
et al., 2007). Cities with a larger population also tend to have a larger
threshold VANUI value, which is also reflected in the logistic relation-
ship between optical threshold NTL DN value and the size of urban clus-
ters (Zhou et al., 2014). However, such effects may disappear when
population reaches certain threshold (i.e., a lognormal or logistic rela-
tionship) because NTL would become saturated due to its internal limi-
tation (Bennett and Smith, 2017). GDPpc has small but similar effects on
both coefficients as total population. Higher GDPpc may imply a higher
total energy/light consumption of a city as a whole, which in turn will
lead to more light blooming and thus a larger threshold VANUI value.
Meanwhile, higher GDPpcmay alsomean higher economic productivity
of the urban land, thus lowering the increasing rate of pBUA with NTL.
The rate of BUA expansion decreased as a city's GDPpc increased (Seto
et al., 2011). This effect of GDPpc again would finally disappear because
of the saturation of the NTL signal. In sum, it remains difficult to explain
why a city with more rainfall would result in a lower VANUI threshold.
One possible reason would be that the image quality is affected by the
clouds (e.g., moonlit clouds may not be completely excluded, thereby
causing anoverall decline of NTL brightness) (Elvidge et al., 2001, 1997).

The landscape structure did not affect both δ and ϕ, except that
openness may be weakly correlated with the slope coefficient (δ). A



Fig. 8. The linear or log-linear regression relationship between the model coefficient breakpoint (ϕ) and socioeconomic, climatic, geographic, and landscape structure variables based on
120 random cities.
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larger openness valuemeans on averagemore open spacewithin a half-
kilometer radius,which allowsmore light to scatter and illuminate non-
BUA space, and thus can lower the increasing rate of pBUAwith VANUI.
The goodness of fit (R2) of the hockey-stick model for the 120 cities,
however, is correlated with the landscape metrics. The positive correla-
tion between R2 and cohesion/proximity, and the negative correlation
between R2 and openness suggests that cities with more compacted
and continuous BUA (e.g., many large cities in high-income regions)
can be predicted with higher confidence than others. Openness as a
measure of fragmentation is scale-dependent. If the data resolution
was improved, openness computed based on a smaller circle would be
reduced for BUA pixels. Therefore, new generation NTL data with finer
spatial resolution (e.g., VIIRS-DNB) is critical to increase the perfor-
mance of BUA mapping (Elvidge et al., 2013). The random forests



1277Z. Ouyang et al. / Science of the Total Environment 647 (2019) 1266–1280
model, which considers both linear and non-linear effects, explained
7.7% of the variation of δ (note: slope is themost important model coef-
ficient for mapping BUA), 32.7% of the variation of ϕ, and 29.9% of R2.
The most significant variables that appeared in random forests, were
also consistent with those based on linear regression analysis, including
population and GDPpc for both δ and ϕ, openness for δ, precipitation for
ϕ, and openness, cohesion, and proximity for R2.

In summary, the variation of the hockey-stick model's performance
can be partially attributed to landscape metrics, and that of the model
coefficients can be partially attributed to socioeconomic variables,
while climatic and geographic variables have little effects on both.
Fig. 9. The linear or log-linear regression relationship between the model goodness of fit (R2)
random cities.
However, we are still uncertain about what major driving forces are re-
sponsible for the variation among these coefficients and model perfor-
mances. Future studies should be devoted to continuously exploring
the variation of model coefficients and performance among cities in im-
proving BUA mapping form NTL.

4.2. Why hierarchical models?

The advantage of hierarchicalmodels over complete-poolingmodels
is obviouswhen group characteristics (i.e., cities) are different in certain
ways to make individuals (i.e., pixels) not interchangeable among
and socioeconomic, climatic, geographic, and landscape structure variables based on 120



Table 2
Prediction accuracy based on the root mean square error (RMSE) and the Watanabe-
Akaike Information Criterion (WAIC) among the Bayesian Hierarchical Model (BHM),
the Bayesian no-pooling model, and the Bayesian complete-pooling model.

Criteria BHM No-pooling Pooling Region Group
size

Data size

RMSE 0.126 0.126 0.152 Globe 120 cities 541,696 pixels
WAIC −18,671.1 −18,669.8 −6131.4 China 10 cities 6406 pixels
WAIC −569.3 −562.0 −367.3.3 China 10 cities 500 pixels
WAIC −8891.0 −8890.3 −6131.6 U.S. 10 cities 8000 pixels
WAIC −498.5 −477.4 −362.2 U.S. 10 cities 500 pixels

Fig. 10.Relative importanceof the 12variables (Table 1) inpredicting pBUA revealed by random forests (1000 trees) for the slope (δ), theVANUI threshold (ϕ), and the goodness offit (R2).
The importance of a variable was measured by mean decrease in accuracy and Gini.
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groups, as they can significantly improve prediction accuracy compared
to the complete-pooling models (Table 2).

The advantages of hierarchical models over no-pooling models are
not so obvious because they demonstrated similar prediction accuracy,
especially when the sample size is large (Table 2), but there are a few
implicit benefits from the hierarchical modeling. Firstly, both no-
pooling and complete-pooling models can be regarded as a special
case of a hierarchical model. When there is little group-level variation,
the hierarchical model reduces to the classical complete-pooling
model with no group indicators. Conversely, when there is a great
group-level variation, the hierarchical model reduces to the classical
no-pooling model with group indicators (Gelman and Hill, 2007).
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Mathematically, one can force a hierarchical model to become a no-
pooling model or complete-pooling model by setting hierarchical vari-
ance parameters to zero or infinity (in our case,σ0,σ1, andσ2). This sug-
gests that even when we do not gain any additional benefits from the
hierarchical model, there is little risk of using the hierarchical model
(at worst it is the same as the no-pooling/complete-pooling model).
Therefore, hierarchical models aremore plausible because they guaran-
tee the best prediction accuracy regardless of how significant group-
level variations are. More importantly, one can get the most benefits
from hierarchical models when groups are different but not completely
different (Gelman and Hill, 2007). Secondly, hierarchical models can
achieve higher prediction accuracies than no-pooling models, although
it depends on sample size. From a Bayesian's perspective, the hyper
model (i.e., Eq. (6)) provides an informative prior for each city-specific
model. When the sample size in a city is large, there is strong informa-
tion included in that city's data so there is no necessity to use informa-
tion from the prior (Bayes' rule suggests that in such cases, the posterior
is close to the likelihood). However, when sample size is small, this prior
information becomes very useful as it regulates the modeler to reduce
over-fitting (by telling the modeler a reasonable range of the parame-
ters). We demonstrated this by reducing the sample to 50 pixels per
city (which is not small compared to many observational studies in
Ecology and Geography) to show increased prediction accuracy of
BHM over no-pooling models. In reality, we often have a very limited
sample for one or a few groups. Previous studies have demonstrated
that when there are groups with limited samples, hierarchical models
have the ability to increase overall prediction accuracy and reduce un-
certainty (Alberti, 2005; Qian et al., 2015a, 2015b). Lastly and most im-
portantly, the estimated hyper distribution of parameters (Eq. (6)) is
valuable for future (and group-specific) models under a Bayesian
framework. Often, one usually has a new but small sample for future
modeling. In such cases, a new Bayesian model using Eq. (6) as a prior
with new data derived likelihoods can gradually update the pBUA-
VANUI function so that it can best fit city-specific/region-specific data.
Even with very limited new data, including Eq. (6) as a prior can guar-
antee that the new model will be properly regulated. Alternatively,
with an informative prior it can reduce the need of large samples, saving
costs of both human andfinancial resources. Eq. (6) can also be used as a
useful prior for mapping BUA using VANUI for a new region and for a
different year.

4.3. Broad implications

We focused on BUA mapping from VANUI that is derived from
DMSP-OLS NTL and MODIS NDVI product. Our methods, in principle,
apply to other similar NTL derived indices for both impervious surface
area and BUAmapping, andmorewidely to the applications ofmapping
other biophysical quantities from remote sensing. The application of re-
mote sensing in mapping land surface properties often relies on regres-
sion models between the phenomenon of interest and remote sensing
data. Yet this same regression model can vary among different spatial
or temporal units (e.g., ecoregion, administrative unit, size, year, etc.)
due to heterogeneity caused by spatial, temporal, or other organiza-
tional factors. For example, the same form of a vegetation photosynthe-
sis model could be applied in various ecosystems, but specific
parameters should be tuned differently in different ecosystem types or
in different regions of the same ecosystem type (Wang et al., 2010;
Xiao et al., 2005, 2004). The same regression model between LiDAR de-
rived variables and aboveground biomass (AGB) may be used for AGB
mapping, but it may vary by forest age groups and forest type groups
(Boudreau et al., 2008; Giannico et al., 2016). To map soil salinity, the
same regression relationship between soil salinity and hyper-spectral
reflectancemay vary in specific coefficients among different plant com-
munities (Zhang et al., 2011). Following this school of thought, there
might always be room to improve the overall accuracy by considering
the different responses of ecosystem functions to the same set of
predictors. This could be realized by grouping on certain characteristics
of the subject to reduce the effects of confounding factors (by making
them similar among units within a group) to the same relationship of
interest among groups. A hierarchical model, or a no-pooling model
with group indicators, can thus be conducted for improvedmapping ac-
curacy. However, considering themany advantages discussed above,we
strongly recommend Bayesian hierarchical models.

5. Conclusions

We developed a Bayesian hierarchical hockey-stick model to inves-
tigate the variations of the pBUA-VANUI relationship among 120 cities
across the globe. We found that there were substantial differences in
the model parameters (i.e., the slope (0.658 ± 0.318)) and the thresh-
old VANUI (−1.92 ± 0.769, log scale) and model performance
(i.e., the coefficients of determination (0.71±0.14)) among these cities.
However, only a small proportion of the substantial variation in model
parameters can be attributed to socioeconomic differences
(e.g., population, economy, and city size) and a small proportion of the
variation in model performance can be explained by landscape struc-
tures and socioeconomic measures (e.g., compactness, fragmentation,
and population). By comparing Bayesian hierarchical models (BHMs)
to the no-pooling and complete-pooling models, we found that BHMs
and the no-pooling models significantly increased prediction accuracy
of pBUA over the complete-pooling models that ignore the among-city
variations. Both BHMs and no-pooling models outperformed
complete-pooling models by a ~17% increase in prediction accuracy
for the 120 globally distributed cities through considering the unique
pBUA-VANUI relationship by city. Additionally, the BHMs performed
better than no-poolingmodels in providingmeaningful priors for future
Bayesian modeling and in improving prediction accuracy when sample
size is limited. Since regression approaches are often applied in remote
sensing science and the hierarchical structure commonly exists in land-
scapes due to scale-dependent heterogeneity, the hierarchical ap-
proaches developed in this study can be adopted and extended to
map other land surface properties for improved accuracy as well.
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