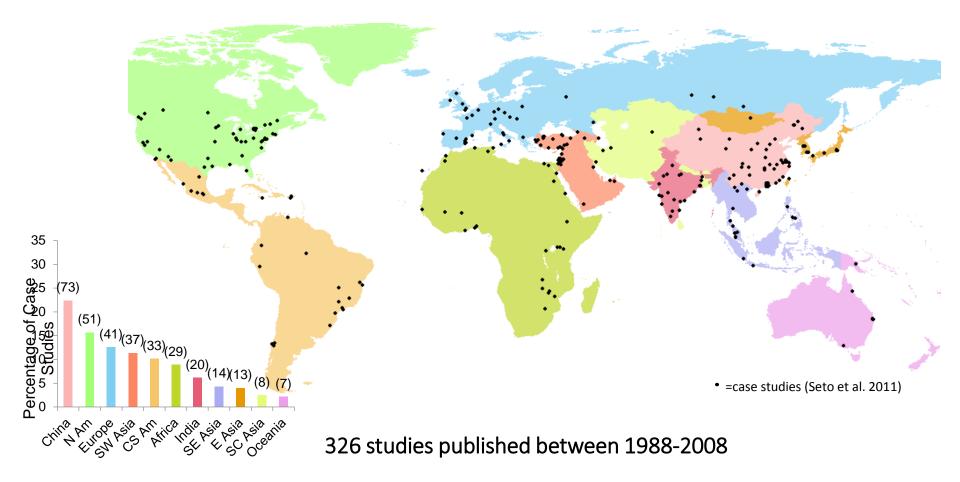
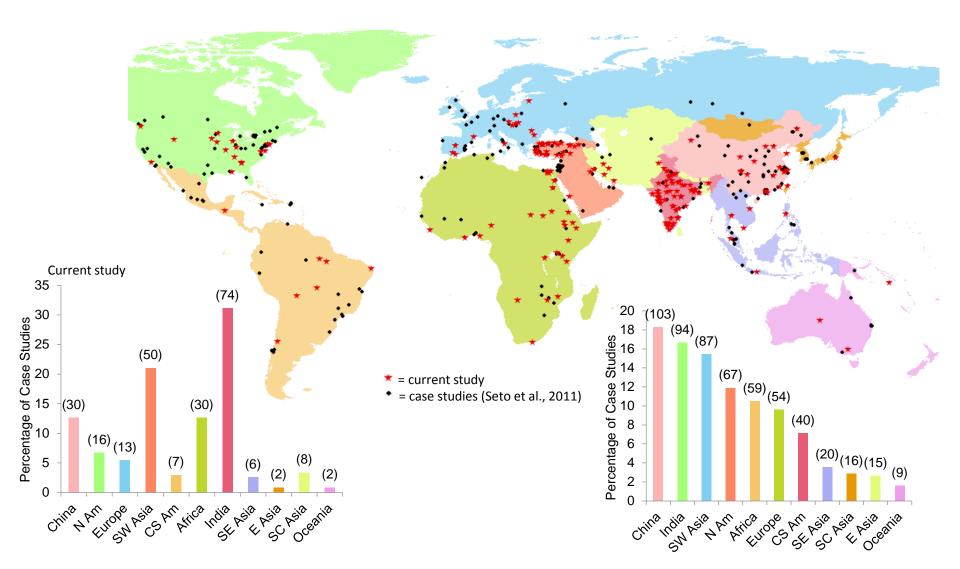
Synthesis of LCLUC Studies on Urbanization

PI: Karen C. Seto, Yale Univ.
Co-I: Burak Güneralp, Texas A&M Univ.
Co-I: Elizabeth A. Wentz, Arizona State Univ.

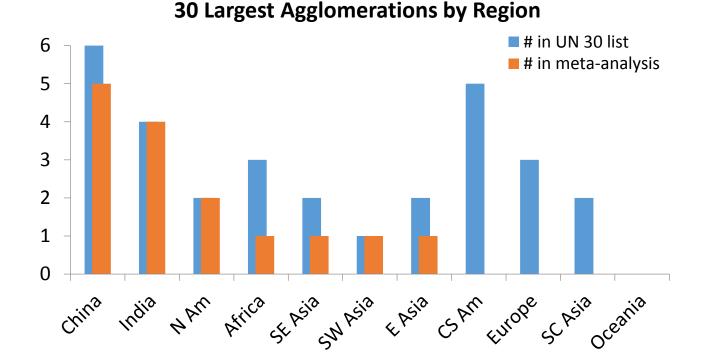
School of Forestry & Environmental Studies


Project Objective

 How do urban remote sensing studies contribute to advancing fundamental and theoretical knowledge of urban LCLUC, sustainability, and the functioning of the Earth system?


Key Research Questions

- 1. What are the patterns of urban LCLUC globally?
- 2. What are the drivers of urban LCLUC globally?
- 3. How do change detection algorithms characterize urban LCLUC?
- 4. What are best practices for applying urban change detection algorithms?
- 5. What are the effects of urban LCLUC on other LCLU?


Where has RS been used to study urban LCLUC?

256 RS studies of urban LCLUC since 2008

Unexpected finding: We're not studying all the largest agglomerations

Factors influencing global annual percent expansion, 1988-2008

Variable	Coef.	Std. Err.
		510. 211.
Population growth rate (% annual)	0.563***	0.129
Middle income (China excluded) GDP growth rate squared (% annual)	0.130***	0.0355
China GDP growth rate squared (% annual)	0.046***	0.00614
Automobile-oriented high income GDP growth rate squared (% annual)†	0.430***	0.140
Other high income GDP growth rate (% annual)	0.980**	0.433
Farm subsidy	-2.430***	0.884
Coastal zone location	0.829	0.514
1980s indicator	1.347**	0.559
Study area size	-0.0000479**	0.0000225
Constant	2.273	0.526

Notes:

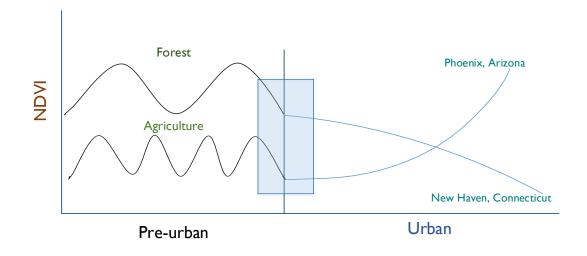
†the group consists of the U.S., Canada, and Australia; *indicates significant at $\alpha = 0.1$; **indicates significant at $\alpha = 0.05$; ***indicates significant at $\alpha = 0.01$.

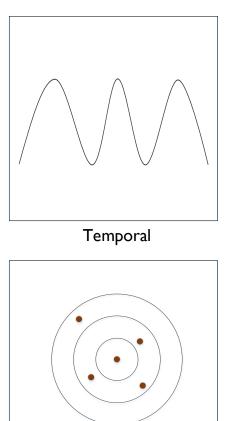
Percentage of urban LCLUC explained by population or GDP growth by region, 1988-2008

Location	Average annual urban expansion growth rate	Approximate percent of urban land expansion attributed to			
		Population growth rate	<i>GDP per capita growth rate</i>		
China	7.48	18	53		
India	4.84	30	23		
Africa	4.32	43	Not significant		
North America	3.31	28	72		
Europe	2.50	4	86		

How do change detection algorithms characterize urban LCLUC?

Urban change varies significantly around the world, but most RS change detection algorithms are developed for a few regions

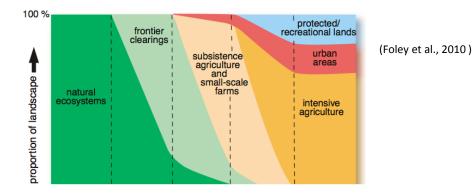

- 1. What types of urban changes are being measured with RS? Which are not?
- 2. What are the RS methods used for different types of urban change?
- 3. Are the RS methods useful to inform policy or science?
- 4. Which RS change detection methods work best and where?


Key findings of RS meta-analysis

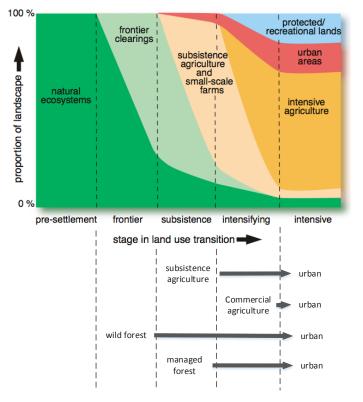
- 1. Wholesale transformation versus qualitative changes
- 2. Transitions
 - Qualitative versus quantitative
 - Changes within urban class
- 3. Spatial patterns

Need to conceptualize signature of urban change

 "Best" change detection method depends on pre-urban phase, trajectory, and type of urban change

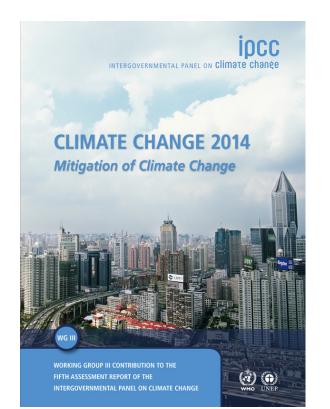

Type of Change

Type of Change	Average Interval between Images (years)	Average Number Images Used in St	
Expansion	16.4	1	8.4
Change/No Change	3.	7	2.8


General Technique

	Expansion	Change/No Change	Pattern	Building	Within Class	Vegetation
Post Classification	26		5			
GIS/RS	II		8	I	I	I
Thresholding	5	5		3	2	2
Differencing	3	4		2		
PCA	2		Ι			
Change Vector	4					
Neural Networks	3	2			Ι	
Image Ratio	Ι				Ι	

What are the effects of urban LCLUC on other LCLU?


What are the effects of urban LCLUC on other LCLU?

(Foley et al., 2010)

Mountains	Coastal	Desert	Tropical	Temperate
	sea-level			
clouds	rise/flooding	vegetation	clouds	vegetation
	unique		dense	
topography	vegetation	albedo	biomass	seasonality

Are there urban changes that are important for policy and science that are not being monitored by remote sensing algorithms?

Human Settlements, Infrastructure, and Spatial Planning

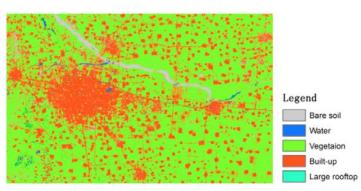
Coordinating Lead Authors: Karen C. Seto (USA), Shobhakar Dhakal (Nepal/Thailand)

Lead Authors:

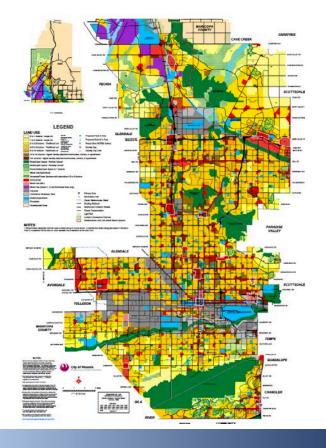
Anthony Bigio (Italy/USA), Hilda Blanco (USA), Gian Carlo Delgado (Mexico), David Dewar (South Africa), Luxin Huang (China), Atsushi Inaba (Japan), Arun Kansal (India), Shuaib Lwasa (Uganda), James McMahon (USA), Daniel B. Mueller (Switzerland/Norway), Jin Murakami (Japan/China), Harini Nagendra (India), Anu Ramaswami (USA)

Contributing Authors:

Antonio Bento (Portugal/USA), Michele Betsill (USA), Harriet Bulkeley (UK), Abel Chavez (USA/Germany), Peter Christensen (USA), Felix Creutzig (Germany), Michail Fragkias (Greece/USA), Burak Güneralp (Turkey/USA), Leiwen Jiang (China/USA), Peter Marcotullio (USA), David McCollum (Austria/USA), Adam Millard-Ball (UK/VISA), Paul Pichler (Germany), Serge Salat (France), Cecilia Tacoli (UK/Italy), Helga Weisz (Germany), Timm Zwickel (Germany)

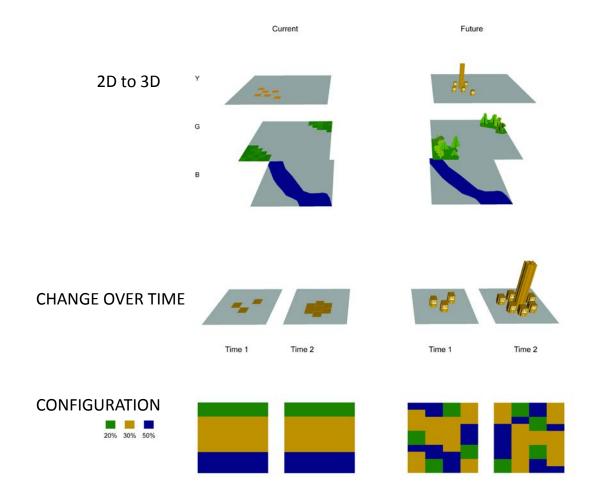

Review Editors: Robert Cervero (USA), Julio Torres Martinez (Cuba)

Chapter Science Assistants: Peter Christensen (USA), Cary Simmons (USA)


If the top 50 emitting cities were a single country, it would rank 3rd in emissions behind China and the U.S.

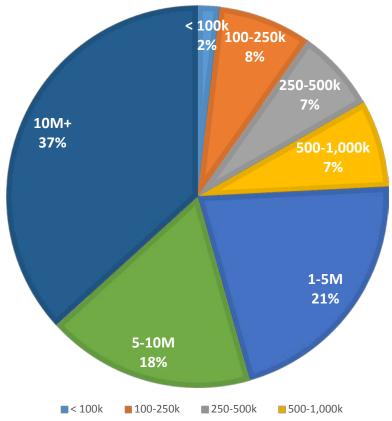
	VKT Elasticities	Metrics to Measure	CO-Variance	Ranges			
			With Density	High Carbon	Low Carbon		
Density	Population and Job Residential Household Job Population	- Household / Population - Building /Floor-Area Ratio - Job / Commercial - Block / Parcel - Dwelling Unit	1.00				
Land Use	Diversity and Entropy Index Land Use Mix	- Land Use Mix - Job Mix - Job-Housing Balance - Job-Population Balance - Retail Store Count - Walk Opportunities	-				
Connectivity	Combined Design Metrics Intersection Density	- Intersection Density - Proportion of Quadrilateral Blocks - Sidewalk Dimension - Street Density	0.39				
Accessibility	Regional Accessibility Distance to CBD Job Access by Auto Job Access by Transit Road-Induced Access (Short-Run) Road-Induced Access (Long-Run)	 Population Centrality Distance to CBD Job Accessibility by Auto and/or Transit Accessibility to Shopping 	0.16				

Both science and policy require more information about urban structure and change

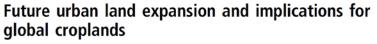


Liu et al. 2015

Basic 2D structure of urban form


Complex 2D structure of urban form

York, A.M., Alberti, M., Conrow, L., Fischer, H., Inostroza, L., Jantz, C., Pickett, S.T.A., Seto, K.C., Taubenböck, H., Wentz, E.A. Seven Aspects for Conceptualizing Multidimensional Urban Form, in prep.


Nearly half of the world's 4+ billion urban dwellers are in settlements < 500,000

Fastest growth in 21st century will be cities <500K, but less than 20% of RS methods are for developed for these

Distribution of urban change detection algorithms by city size

What types of croplands are most vulnerable to urban conversion?

Christopher Bren d'Amour^{a,b}, Femke Reitsma^c, Giovanni Baiocchi^d, Stephan Barthel^{e,f}, Burak Güneralp^g, Karl-Heinz Erb^h, Helmut Haberl^h, Felix Creutzig^{A,b,1}, and Karen C. Setoⁱ

*Nercator Research Institute on Global Commons and Climate Change, 10829 Berlin, Germang, "Department Economics of Climate Change, Techniche Universität Berlin, 10623 Berlin, Germang, "Department of Geography, Cantrebury University, Christhurch 8140, Ner Zealand, "Department of Geographical Sciences, University of Maryland, College Park, MD 20742, "Department of the Built Environment, University, of Gavie, 5t-80176 Gavie, Sweders, "Stockholm Resilience: Centre, Stockholm University, Ste 150591 Stockholm, Sweders, "Stockenter for Geospatial Science, Applications and Technology (GEOSAT), Texas A&M University, College Station, TX 77843,"Imstitute of Social Ecology Vienna, Alpen-Adria Universitaet Klagenfurt, 1070 Vienna, Austria and Yale School of Forestry and Environmental Studies, Yale University, New Haven, CT Gös11

Edited by Jay S. Golden, Duke University, Durham, NC, and accepted by Editorial Board Member B. L. Turner November 29, 2016 (received for review June 19, 2016)

Urban expansion often occurs on croplands. However, there is little scientific understanding of how global patterns of future urban expansion will affect the world's cultivated areas. Here, we combine spatially explicit projections of urban expansion with datasets on global croplands and crop yields. Our results show that urban expansion will result in a 1.8-2.4% loss of global croplands by 2030, with substantial regional disparities. About 80% of global cropland loss from urban expansion will take place in Asia and Africa. In both Asia and Africa, much of the cropland that will be lost is more than twice as productive as national averages. Asia will experience the highest absolute loss in cropland, whereas African countries will experience the highest percentage loss of cropland. Globally, the croplands that are likely to be lost were responsible for 3-4% of worldwide crop production in 2000. Urban expansion is expected to take place on cropland that is 1.77 times more productive than the global average. The loss of cropland is likely to be accompanied by other sustainability risks and threatens livelihoods, with diverging characteristics for different megaurban regions. Governance of urban area expansion thus emerges as a key area for securing livelihoods in the agrarian economies of the Global South.

 \triangleleft

Z

urbanization | global land use change | livelihoods | agricultural productivity | megaurban regions

Urban land expansion—the process of creating the built en-vironment to house urban populations and their activities is one of the fundamental aspects of urbanization. Urban land expansion modifies habitats, biogeochemistry, hydrology, land cover, and surface energy balance (1). In most parts of the world, urban land is expanding faster than urban populations (2). Whereas urban populations are expected to almost double from 2.6 billion in 2000 to 5 billion in 2030 (3), urban areas are forecast to triple between 2000 and 2030 (4). A defining characteristic of contemporary urbanization is the rise of megaurban regions (MURs): the merging of multiple urban areas into a contiguous and continuous urban fabric. These MURs differ from megacities with populations of 10 million or more in two important and fundamental ways: administratively, they consist of multiple contiguous entities with discrete governance structures; biophysically, they are a single continuous urban area whose absolute spatial size creates challenges for urban, land, and transport governance. The rate and magnitude of urban land expansion are influenced by many macro factors, including income, economic development, and population growth, as well as a number of local and regional factors such as land use policies, the informal economy, capital flows, and transportation costs (5).

More than 60% of the world's irrigated croplands are located near urban areas (6), highlighting the potential competition for land between agricultural and urban uses. Individual case studies show that high rates of urban expansion over the last three decades have resulted in the loss of cropland all around the world, with examples from China, the United States, Egypt, Turkey,

India, and other countries (7–9). Although cropland loss has become a significant concern in terms of food production and livelihoods (10) for many countries, there is very little scientific understanding of how future urban expansion and especially growth of MURs will affect croplands. However, this knowledge is key given the potential large-scale land conflicts between agriculture and urban uses in an era of rapid megaurbanization.

Most of the future urban population and urban area expansion are forecast to take place in Asia and Africa (4), often in places with high poverty rates and potentially prone to systemic disruptions in the food system (11, 12). For many of these countries, agriculture is a crucial economic sector in terms of income generation, percentage of total national gross domestic product (GDP), and employment source. Thus, there is a need to assess the implications of urban expansion on croplands on global, national, and subnational scales to identify potential areas of conflict as well as strategies for shaping more sustainable forms of urban expansion.

This paper fills these knowledge gaps by addressing the following questions (i) Where are croplands most vulnerable to conversion due to future urban expansion? (i(i) What is the magnitude of cropland loss, especially of prime cropland, due to future urban expansion? (iii) How will the loss of cropland saffect total cropland area and relative economic importance of agriculture for different countries? Sustainability in the era of megaurbanization will require understanding the "hidden linkages" between urbanization and food systems (13), including where and how to maintain croplands to grow food, the most basic of all human necessities. Here, we define food systems as "the chain of activities connecting food production, processing, distribution, consumption, and waste management, as well as all the associated regulatory institutions and activities" (14).

Significance

Urbanization's contribution to land use change emerges as an important sustianability concern. Here, we demonstrate that projected urban area expansion will take place on some of the world's most productive croplands, in particular in megaurban regions in Asia and Africa. This dynamic adds pressure to potentially strained future food systems and threatens livelihoods in vulnerable regions.

Author contributions: C.B.d., F.R., F.C., and K.C.S. designed research; C.B.d., F.R., S.B., B.G., F.C., and K.C.S. performed research; C.B.d., F.R., and G.B. contributed analytic tools; C.B.d., F.R., G.B., S.B., S.B., K.-H.E., H.H., F.C., and K.C.S. analyzed data; and C.B.d., F.R., G.B., S.B., B.G., K.-H.E., H.H., F.C., and K.C.S. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission. J.S.G. is a Guest Editor invited by the Editorial Board.

¹To whom correspondence should be addressed. Email: creutzig@mcc-berlin.net.

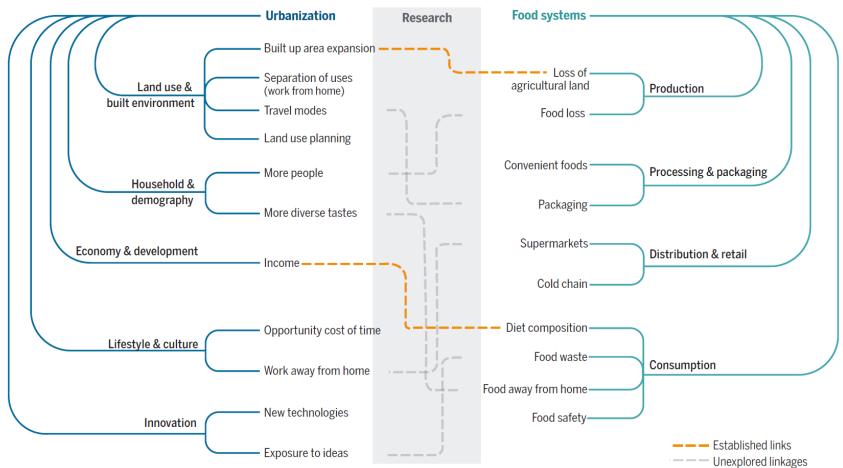
This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. 1073/pnas.1606036114/-/DCSupplemental.

CrossMark

Global agricultural land loss to urban expansion is relatively small

Region or country	Expected cropland loss, Mha	Relative cropland loss, % of cropland	Production loss, Pcal·y ⁻¹	Production loss, % of total crop production	Productivity compared to domestic/regional average
World	30 (27–35)	2.0 (1.8–2.4)	333 (308–378)	3.7 (3.4–4.2)	1.77
Asia	18 (16–21)	3.2 (2.9–3.7)	231 (214–264)	5.6 (5.1–6.3)	1.59
Africa	6 (5–6)	2.6 (2.4–3)	49 (45–52)	8.9 (8.3–9.4)	3.32
Europe	2 (2–3)	0.5 (0.5-0.9)	17 (16–23)	1.2 (1.1–1.5)	2.18
Americas	5 (4–5)	1.2 (1.1–1.4)	35 (32–40)	1.3 (1.2–1.5)	1.09
Australasia	0.1 (0-0.1)	0.2 (0.1–0.3)	0.3 (0.1–0.3)	0.2 (0.1–0.3)	0.94
China	7.6 (7.1–8.6)	5.4 (5–6.1)	137 (128–153)	8.7 (8.2–9.8)	1.53
India	3.4 (3.3–3.7)	2.0 (1.9–2.2)	34 (32–38)	3.9 (3.7–4.3)	1.61
Nigeria	2.1 (1.8–2.5)	5.7 (5–6.9)	16 (15–17)	11.7 (10.7–12.6)	1.82
Pakistan	1.8 (1.7–2)	7.6 (7.2–8.6)	9 (9–10)	8.8 (8.4–9.9)	1.22
United States	1.5 (1.4–1.6)	0.8 (0.8-0.9)	11 (11–12)	0.7 (0.7–0.8)	0.90
Brazil	1.0 (0.9–1.2)	2.0 (1.7–2.4)	10 (9–12)	2.4 (2.1–2.8)	1.22
Egypt	0.8 (0.7-0.8)	34.1 (31.6–35.8)	25 (23–26)	36.5 (34–38)	1.07
Vietnam	0.8 (0.7–0.8)	10.3 (9.3–11.2)	15 (15–17)	15.9 (15.2–17.2)	1.41
Mexico	0.7 (0.6–0.8)	1.9 (1.7–2.3)	4 (4–5)	3.7 (3.2–4.4)	1.91
Indonesia	0.6 (0.5–0.7)	1.1 (0.9–1.3)	10 (8–11)	2.3 (2–2.7)	2.03

Regional losses will be acute


Region or country	Expected cropland loss, Mha	Relative cropland loss, % of cropland	Production loss, Pcal·y ⁻¹	Production loss, % of total crop production	Productivity compared to domestic/regional average
World	30 (27–35)	2.0 (1.8–2.4)	333 (308–378)	3.7 (3.4–4.2)	1.77
Asia	18 (16–21)	3.2 (2.9–3.7)	231 (214–264)	5.6 (5.1–6.3)	1.59
Africa	6 (5–6)	2.6 (2.4–3)	49 (45–52)	8.9 (8.3–9.4)	3.32
Europe	2 (2–3)	0.5 (0.5-0.9)	17 (16–23)	1.2 (1.1–1.5)	2.18
Americas	5 (4–5)	1.2 (1.1–1.4)	35 (32–40)	1.3 (1.2–1.5)	1.09
Australasia	0.1 (0–0.1)	0.2 (0.1–0.3)	0.3 (0.1–0.3)	0.2 (0.1–0.3)	0.94
China	7.6 (7.1–8.6)	5.4 (5–6.1)	137 (128–153)	8.7 (8.2–9.8)	1.53
India	3.4 (3.3–3.7)	2.0 (1.9–2.2)	34 (32–38)	3.9 (3.7–4.3)	1.61
Nigeria	2.1 (1.8–2.5)	5.7 (5–6.9)	16 (15–17)	11.7 (10.7–12.6)	1.82
Pakistan	1.8 (1.7–2)	7.6 (7.2–8.6)	9 (9–10)	8.8 (8.4–9.9)	1.22
United States	1.5 (1.4–1.6)	0.8 (0.8-0.9)	11 (11–12)	0.7 (0.7–0.8)	0.90
Brazil	1.0 (0.9–1.2)	2.0 (1.7–2.4)	10 (9–12)	2.4 (2.1–2.8)	1.22
Egypt	0.8 (0.7–0.8)	34.1 (31.6–35.8)	25 (23–26)	36.5 (34–38)	1.07
Vietnam	0.8 (0.7–0.8)	10.3 (9.3–11.2)	15 (15–17)	15.9 (15.2–17.2)	1.41
Mexico	0.7 (0.6–0.8)	1.9 (1.7–2.3)	4 (4–5)	3.7 (3.2–4.4)	1.91
Indonesia	0.6 (0.5–0.7)	1.1 (0.9–1.3)	10 (8–11)	2.3 (2–2.7)	2.03

Regional losses will be acute

Region or country	Expected cropland loss, Mha			Production loss, % of total crop production	Productivity compared to domestic/regional average
World	30 (27–35)	2.0 (1.8–2.4)	(1.8–2.4) 333 (308–378) 3.7 (3		1.77
Asia	18 (16–21)	3.2 (2.9–3.7)	231 (214–264)	5.6 (5.1–6.3)	1.59
Africa	6 (5–6)	2.6 (2.4–3)	49 (45–52)	8.9 (8.3–9.4)	3.32
Europe	2 (2–3)	0.5 (0.5-0.9)	17 (16–23)	1.2 (1.1–1.5)	2.18
Americas	5 (4–5)	1.2 (1.1–1.4)	35 (32–40)	1.3 (1.2–1.5)	1.09
Australasia	0.1 (0-0.1)	0.2 (0.1–0.3)	0.3 (0.1–0.3)	0.2 (0.1–0.3)	0.94
China	7.6 (7.1–8.6)	5.4 (5–6.1)	137 (128–153)	8.7 (8.2–9.8)	1.53
India	3.4 (3.3–3.7)	2.0 (1.9–2.2)	34 (32–38)	3.9 (3.7–4.3)	1.61
Nigeria	2.1 (1.8–2.5)	5.7 (5–6.9)	16 (15–17)	11.7 (10.7–12.6)	1.82
Pakistan	1.8 (1.7–2)	7.6 (7.2–8.6)	9 (9–10)	8.8 (8.4–9.9)	1.22
United States	1.5 (1.4–1.6)	0.8 (0.8-0.9)	11 (11–12)	0.7 (0.7–0.8)	0.90
Brazil	1.0 (0.9–1.2)	2.0 (1.7–2.4)	10 (9–12)	2.4 (2.1–2.8)	1.22
Egypt	0.8 (0.7–0.8)	34.1 (31.6–35.8)	25 (23–26)	36.5 (34–38)	1.07
Vietnam	0.8 (0.7–0.8)	10.3 (9.3–11.2)	15 (15–17)	15.9 (15.2–17.2)	1.41
Mexico	0.7 (0.6–0.8)	1.9 (1.7–2.3)	4 (4–5)	3.7 (3.2–4.4)	1.91
Indonesia	0.6 (0.5–0.7)	1.1 (0.9–1.3)	10 (8–11)	2.3 (2–2.7)	2.03

Significant loss of staple crops in Asia and Africa

	Maize production in competing cells		Rice production in competing cells		Soybean production in competing cells		Wheat production in competing cells	
Region or country	Mton∙y ⁻¹	Share of total production, %	Mton∙y ⁻¹	Share of total production, %	Mton∙y ⁻¹	Share of total production, %	Mton∙y ⁻¹	Share of total production, %
World	25.8	4.3	51.8	9.1	3.3	2.1	39.6	7.1
Asia	15.1	9.6	48.2	9.2	1.7	7.0	31.9	12.9
Africa	5.1	14.1	2.9	18.8	0.1	11.2	4.0	26.0
Europe	1.0	1.5	0.1	2.2	0.1	2.8	2.7	1.6
Americas	4.6	1.4	0.6	2.2	1.5	1.1	0.9	0.9
Australasia	0.0	0.7	0.0	0.0	0.0	0.2	0.0	0.1
Тор 10								
China	12.7	10.9	18.7	10.2	1.4	9.0	20.6	20.5
India	0.7	6.5	10.5	8.3	0.1	2.2	5.7	8.2
Nigeria	0.5	11.7	0.5	17.5	0.0	11.6	0.0	10.4
Pakistan	0.2	13.0	0.8	12.2	0.0	13.2	3.1	16.7
United States	2.1	0.9	0.1	0.9	0.6	0.8	0.4	0.6
Brazil	0.7	1.9	0.2	1.8	0.4	1.3	0.1	2.2
Egypt	3.8	63.3	2.3	41.2	0.0	53.3	3.7	59.5
Vietnam	0.3	14.7	7.5	27.1	0.0	24.3	_	_
Mexico	0.9	4.9	0.0	4.3	0.0	0.9	0.2	5.4
Indonesia	0.7	7.3	4.5	9.2	0.1	9.2		_

Urbanization & food systems

Fig. 1. Established and underexplored linkages between urbanization and food systems. The underexplored linkages are illustrative and not exhaustive.

sciencemag.org **SCIENCE**

Seto and Ramankutty, 2016

(Reba et al., 2016)