
The Launch Of GOSAT-2 and GHG/Air Quality Monitoring By GOSAT Satellite Series

*Tsuneo Matsunaga¹, Isamu Morino¹, Yükio Yoshida¹, Makoto Saito¹, Hibiki M Noda¹, Hirofumi Ohyama¹, Akihide Kamei¹, Fumie Kawazoe¹, Ryoichi Imasu², Teruyuki Nakajima³, Takashi Nakajima⁴, and Makiko Hashimoto³

1. National Institute for Environmental Studies (NIES)
hive sity of Tokyo, 3. Japan Aerospace Exploration Agency (JAXA)

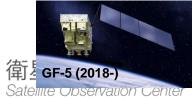
4. Tokai University

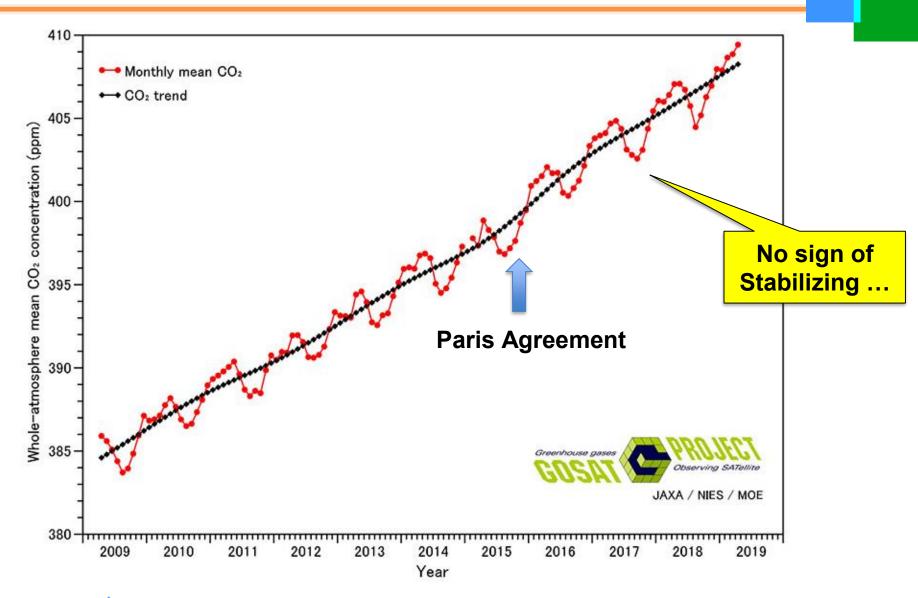
Successful Launch of GOSAT-2 on October 29, 2018 by H-IIA Rocket from JAXA Tanegashima Space Center

- (Left) H-IIA F-40 Launch from JAXA Tanegashima Space Center (13:08, October 29, 2018).
 DIWATA-2 was also onboard.
- (Top) Separated GOSAT-2 spacecraft taken from the launch vehicle (16 minutes after launch)
- CAI-2 first light images (Nov. 5 and 6, 2018)
- FTS-2 first data (Dec. 13, 2018)

Satellites for Greenhouse Gases Observation (Column observation only)

Mission	Country / Organization	Period	GHGs	Comments
ENVISAT / SCIAMACHY	ESA	2002 -2012	CO2, CH4	Grating, CO
GOSAT	Japan	2009 -	CO2, CH4	FTS
OCO-2	US	2014 -	CO2	Grating
GHGSat-D/CLAIRE	GHGSat (Canada)	2016 -	CO2, CH4	Fabry-Pérot
TanSat	China	2016 -	CO2	Grating
Sentinel-5p / TROPOMI	EC	2017 -	CH4	Grating
FY-3D / GAS	China	2017 -	CO2, CH4	FTS
GF-5 / GMI	China	2018 -	CO2, CH4	Spatial Heterodyne
GOSAT-2	Japan	2018 -	CO2, CH4	FTS, CO
GOSAT-2 ISS / OCO-3	Japan US	2018 - 2019 -	CO2, CH4 CO2	FTS, CO Grating
	•			
ISS / OCO-3	US	2019 -	CO2	
ISS / OCO-3 MicroCarb	US France	2019 - 2021 -	CO2	
ISS / OCO-3 MicroCarb MethaneSAT	US France EDF (NPO in US)	2019 - 2021 - 2021-	CO2 CO2 CH4	Grating
ISS / OCO-3 MicroCarb MethaneSAT Sentinel 5A, 5B, 5C	France EDF (NPO in US) EC	2019 - 2021 - 2021- 2022 -	CO2 CO2 CH4 CH4	Grating
ISS / OCO-3 MicroCarb MethaneSAT Sentinel 5A, 5B, 5C GOSAT-3	US France EDF (NPO in US) EC Japan	2019 - 2021 - 2021- 2022 - 2022 -	CO2 CO2 CH4 CH4 CO2, CH4	Grating CO TBD





GOSAT Global CO2 Trend in Past Ten years

- Volume 1 General Guidance and Reporting
- Chapter 6 Quality Assurance / Quality Control and Verification 6.10.2 Comparisons with Atmospheric Measurements
- 6.10.2.5 Use of Complimentary Observations and Global Modelling Product
 Comparing National Inventory to the Global Inverse Model Products
 - Satellite Observations
 - Procedures for Inventory Comparison to Estimates based on Atmospheric Measurements
- 6.10.2.7 Check List for Applying Inverse Model Estimates for Comparison with National Inventories
- 6.10.2.8 Necessary Steps for Comparing National Inventory to the Global / Regional Inverse Modelling Products

Satellite Observations

6.10.2.6

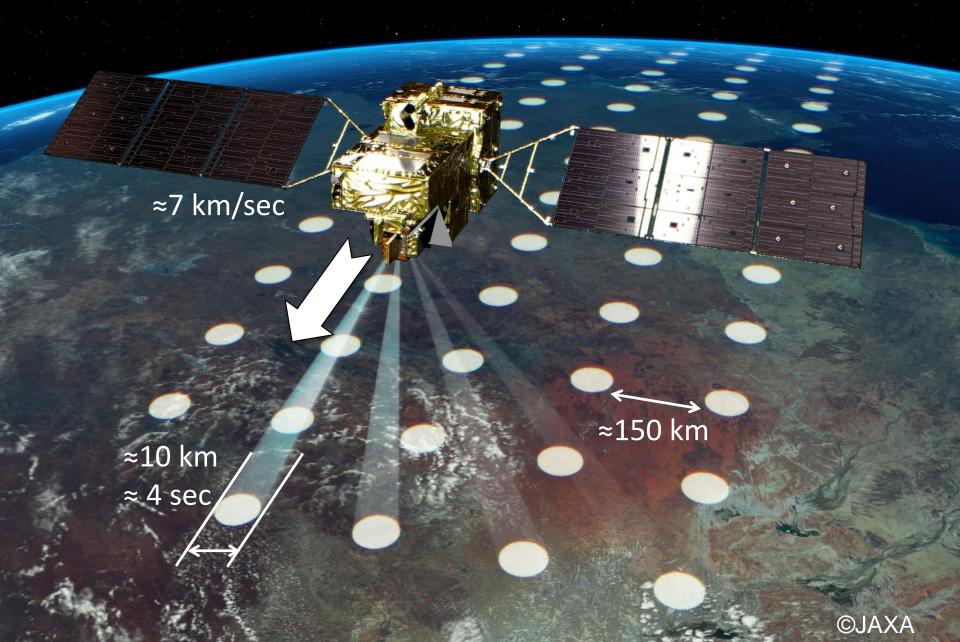
"Satellite observations by **GOSAT** were used for national scale methane emission estimates with regional inverse models by (Ganesan et al. 2017) for India and (Turner et al. 2015) for the US. "

"Local GHG concentration enhancements observed by the **GOSAT** satellite correlate well with transport model simulations (Janardanan et al. 2016; Janardanan et al. 2017),"

https://www.ipcc.ch/report/2019-refinement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/

GOSAT and GOSAT-2 Specifications / Requirements

	GOSAT	GOSAT-2	
Launch year and life time	Jan. 2009, 5 years	Oct. 2018, 5 years	
Satellite (Dimension, mass, power)	3.7 x 1.8 x 2.0 m, 1750 kg, 3.8 KW (EOL)	5.3 x 2.0 x 2.8 m, 1784 kg, 5.0 KW	
Orbit (Type, altitude, repeat cycle, equator crossing time)	Sun synchronous, 666 km, 3 days, 13:00	Sun synchronous, 613 km, 6 days, 13:00±15 min	
Target gases	CO ₂ , CH ₄ , O ₂ , O ₃ , H ₂ O	CO ₂ , CH ₄ , O ₂ , O ₃ , H ₂ O, CO	
Fourier Transform Spectrometer (FTS* and FTS-2) *https://www.eorc.jaxa.jp/GO SAT/instrument_1.html	Band 1: $0.758 - 0.775 \mu m$ Band 2: $1.563 - 1.724 \mu m$ Band 3: $1.923 - 2.083 \mu m$ Band 4: $5.56 - 14.3 \mu m$ Spectral resolution = $0.24 - 0.37 \text{ cm}^{-1}$ IFOV = $10.5 \text{ km}\phi$ Pointing = $\pm 20^{\circ}$ (AT), $\pm 35^{\circ}$ (CT) Polarimetry = Band 1, 2, 3	Band 1: $0.754 - 0.772 \mu m$ Band 2: $1.563 - 1.695 \mu m$ Band 3: $1.923 - 2.381 \mu m$ Band 4: $5.56 - 8.42 \mu m$ Band 5: $8.42 - 14.29 \mu m$ Spectral resolution = 0.2 cm^{-1} IFOV = $9.7 \text{ km}\phi$ Pointing = $\pm 40^{\circ}$ (AT), $\pm 35^{\circ}$ (CT) Polarimetry = Band 1, 2, 3	
Cloud and Aerosol Imager (CAI and CAI-2)	Nadir B1 = 380 nm B2 = 674 nm B3 = 870 nm B4 = 1600 nm B1-B3 = 500 m / 1000 km, B4 = 1500 m / 750 km	B1-5: Forward (+20°), B6-10: Backward(-20°) B1 = 343 nm B6 = 380 nm B2 = 443 nm B7 = 550 nm B3 = 674 nm B8 = 674 nm B4 = 869 nm B9 = 869 nm B5 = 1630 nm B10= 1630 nm B1-B4, B6-B9= 460 m / 920 km B5, B10 = 920 m / 920 km	
Other new features of	Intelligent pointing using FTS-2 FOV camera, fully programmable (target mode)		


observation, and improved SNR.

GOSAT-2 FTS-2

5-point Mode Observation by GOSAT-2

SWIR Level 2 Products

GOSAT (April 2009 -)

CO₂ column amount product

CH₄ column amount product

H₂O column amount product

~ XCO₂, XCH₄, and XH₂O over the cloud-free region are simultaneously retrieved by the **full-physics based algorithm**.

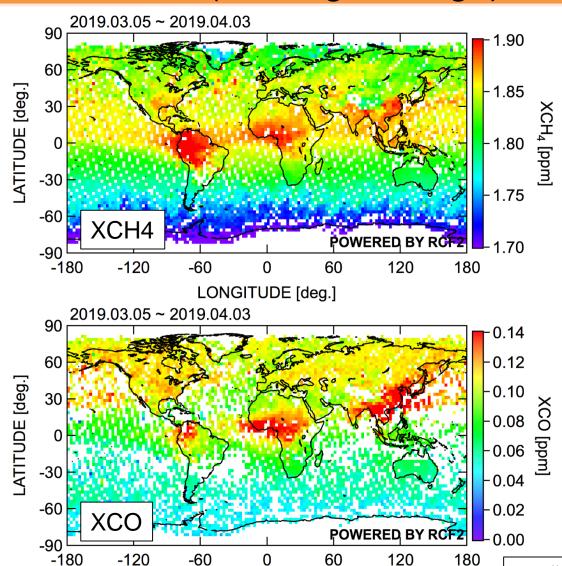
GOSAT-2 (March 2019 -)

Chlorophyll fluorescence and proxy-method product

~ SIF, proxy-based XCH₄ & XCO, and aerosol/cloud related information are retrieved under the cloud-free assumption.

Column-averaged dry-air mole fraction product

~ XCO₂, XCH₄, XCO, and XH₂O over the cloud-free region are simultaneously retrieved by the **full-physics based algorithm**.



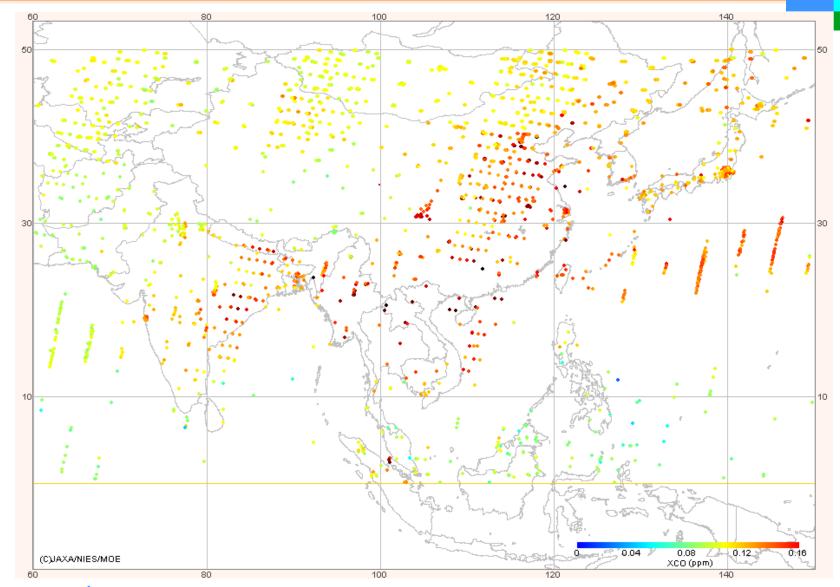
Yoshida et al., EGU, 2019

GOSAT-2 SWIR L2: Proxy-based XCH4 & XCO

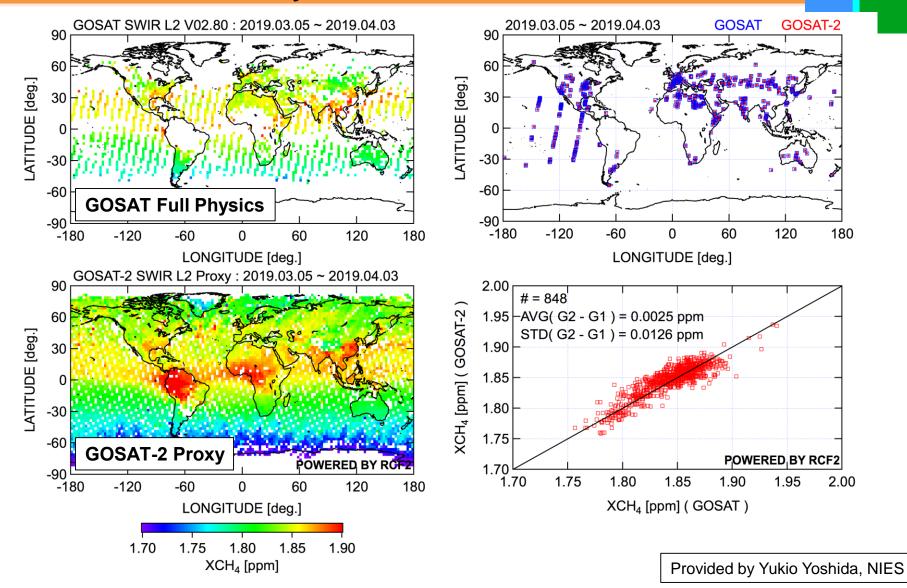
March, 2019 (2.5 deg average)

Based on L1B V002.004

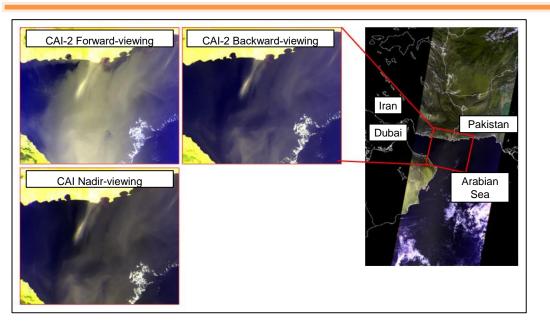
Cloud-screening is insufficient because CAI-2 L2 cloud mask is not used. Only FTS-2 2 µm-band cloud-screening is applied.

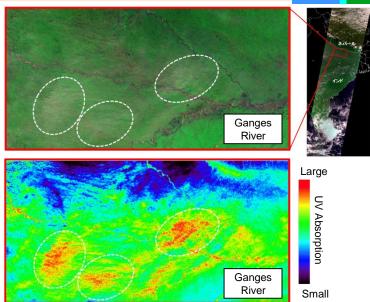

The proxy method uses a ratio of the column concentrations of two gases whose absorption bands are adjacent to each other. It can obtain relatively accurate column concentrations even if clouds and aerosols somewhat affect the optical path length. But its target gases of retrieval are limited, and CO₂ is not applicable.

http://www.nies.go.jp/whatsnew/20190705/20190705.html

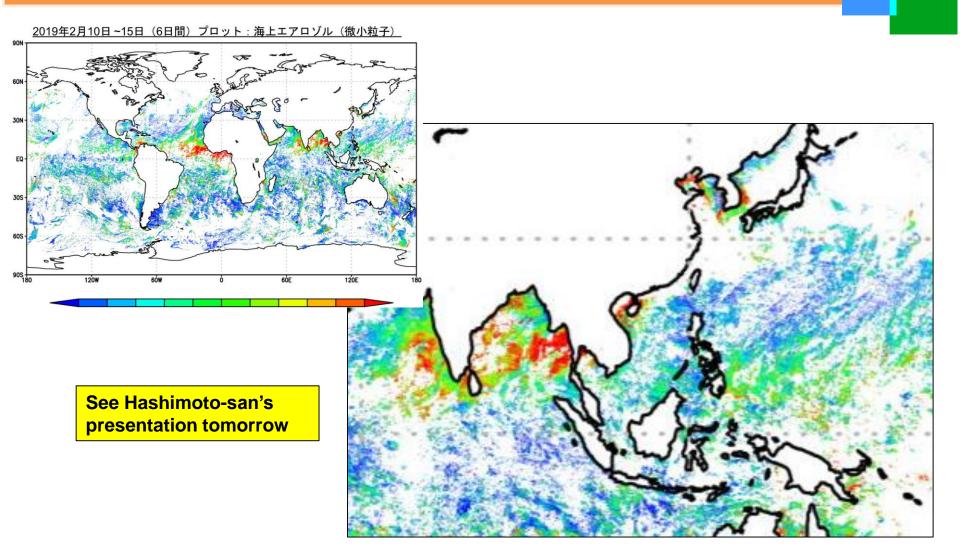

GOSAT-2 FTS-2 SWIR Level 2 Proxy in March 2019 Column Concentration of Carbon Monoxide

Comparison between GOSAT Full Physics XCH4 and GOSAT-2 Proxy XCH4

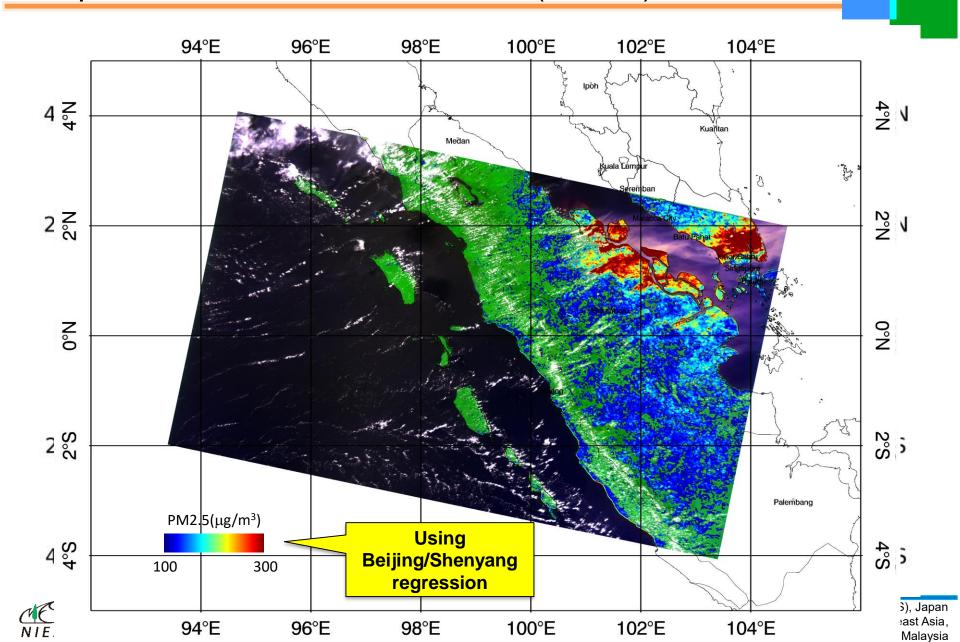

Validation of GOSAT Series Column Concentration Using Total Carbon Column Observing Network (TCCON)



CAI-2 First Light Images (Nov. 5 and 6, 2018)



- Images of Arabian Sea taken by GOSAT CAI and GOSAT-2 CAI-2 on Nov. 5, 2018.
- Combination of forward and backward viewing data provides more information on aerosols than nadir-only data.
- Images of Ganges River in India taken by GOSAT-2 CAI-2 on Nov. 6, 2018.
- Strong UV absorption (441 nm / 339 nm) indicates the presence of black carbon by fires.


GOSAT-2 CAI-2 Level 2 Aerosol Product (Sample) Ocean / Fine mode, Feb. 10 - 15, 2019



GOSAT Air Pollution Watch Sample 1: Indonesia June 20, 2013(P9F31)

2nd GOSAT Series Research Annoucement

- 36 proposals were adopted in 1st RA.
- 2nd RA Application deadline: November, 2019

Merits of becoming GOSAT RA PI and Co-I

- Submitting observation requests for FTS and FTS-2
- 2. Requesting a delivery of standard products before the release to the public.
- 3. Requesting a delivery of research products and internal products
- 4. Requesting a "forced" processing of FTS and FTS-2 L2 products
- 5. Pls can obtain additional information and the technical materials.
- 6. Requesting a delivery of the FTS or FTS-2 L2 data products generated with less strict screening criteria than the products for general users.
- 7. Pls are entitled to participate in the "Pl Meeting".

- 17
- Test of GOSAT-2 Level 2 processing and validation of Level 2 products using TCCON and other data
 - FTS-2 SWIR Level 2 proxy (XCH4, XCO)
 - FTS-2 SWIR Level 2 full physics (XCO2, XCH4, XCO)
 - FTS-2 TIR Level 2
 - CAI-2 Level 2 Cloud Discrimination and Aerosol
- Evaluation of Level 1 products through Level 2 processing
- Public release of GOSAT-2 standard products from NIES website.
 - Level 1 products (July/August 2019)
 - Level 2 products (October/November 2019)
 - Level 4 Flux Products (FY2020 -)
 - Level 1 products are already available from NIES for GOSAT RA Pls.
- GOSAT Series Research Announcement (GOSAT RA)
 - 1st GOSAT Series RA = 36 joint research contracts
 - 2nd GOSAT Series RA will be issued around September, 2019.

Thank you for your attention.

Contact

matsunag@nies.go.jp, soc-info@nies.go.jp

Website

http://www.nies.go.jp/soc/en/ http://www.gosat.nies.go.jp/en/ http://www.gosat-2.nies.go.jp

GOSAT standard products are freely available from GOSAT Data Archive Service

https://data2.gosat.nies.go.jp

