Emissions of Biomass Burning Simulated in Open Burning Combustion Chamber Faculty of Science, Chiang Mai University #### Air Pollution in Chiang Mai, Thailand #### PM₁₀ & Hotspot number in 2016 in Northern Thailand # **Biomass sample collection** Biomass samples were collected from 9 provinces in Northern Thailand Leaf litter in mixed deciduous forest (MDF) Leaf litter in dry dipterocarp forest (DDF) #### **Open System Combustion Chamber** **Biomass samples for burning experiment** **Burning experiment** #### Air flow meter #### **Gas measurement** Air flow rate (m/sec) - ✓ O₂ ✓ CO - ✓ NO - ✓ NO₂ ✓ SO₂ ✓ CO₂ ** #### Gas analyzer Testo 350 XL Leaf litters: DDF Maize residue Leaf litters: MDF **Rice straw** > PM_{2.5} samples were collected on quartz fiber filter. #### Emission factors of PM_{2.5} from biomass burning | Biomass | Efs of PM _{2.5} (g/kg)
(n = 3) | |--------------------|--| | Rice Straw | 3.80±2.09 ^b | | Maize Residues | 2.11±0.91 ^a | | Leaf Litters (DDF) | 3.48±1.36 ^b | | Leaf Litters (MDF) | 4.20±2.74 ^b | #### Emission factors of CO₂, CO and NO from biomass burning | The state of s | | | | | |--|------------------------------------|------------------------|------------------------|---------------------| | Biomass Type | Emission Factor (g/Kg) $(n = 3)$ | | | Ref. | | | CO_2 | СО | NO | | | Rice straw | 898±99 ^a | 39.8±11.8 ^a | 2.34±0.35a | | | Maize residue | 956±116 ^a | 40.5 ± 6.9^{a} | 2.42±0.34 ^a | This study | | Leaf litter (DDF) | 1220±96 ^b | 53.8±8.7 ^a | 2.49 ± 0.46^{ab} | | | Leaf litter (MDF) | 954±263 ^a | 49.0±16.7a | 2.95±0.77 ^b | | | Amazon Forest biomass | 1565±128 | 50.3±17.1 | 2.74±0.75 | Neto et.al. (2013) | | Rice straw | 1105.2±189.3 | 53.2±17.9 | - | Zhang et.al. (2013) | # **Application of EFs** EFs of pollutants can be used for estimation of emission rate (ER) based on hotspots and area burned. # 2017-2019 # HAZE FREE THAILAND PROJECT # Monitoring and Analysis of Ambient PM_{2.5} Chemical Composition and Its Toxicity in Northern Thailand ### Site 1 Mae Hia (MH) Chiang Mai <u>Site 2</u> Nanoi, Nan #### C,H,N content | Biomass | % Content (n = 3) | | | | |--------------------|-----------------------|------------------------|---------------------|--| | | С | Н | N | | | Rice Straw | 34.3±1.2a | 5.47 ± 0.16^{a} | 0.72 ± 0.27^{a} | | | Maize Residues | 39.4±1.2 ^b | 5.97±0.13 ^b | 0.93 ± 0.21^{b} | | | Leaf Litters (DDF) | 44.6±1.6d | 6.09 ± 0.22^{b} | 0.62 ± 0.15^{a} | | | Leaf Litters (MDF) | 42.6±2.0° | 6.11±0.30 ^b | 0.94 ± 0.13^{b} | | # CO and CO₂ concentrations during biomass burning Amount of CO2 emitted was about 20-25 times larger than CO.