Towards Near Daily Monitoring of Inundated Areas over North America through Multi-Source Fusion of Optical and Radar Data

Chengquan Huang ¹, Ben DeVries ¹, Wenli Huang ¹, Jiaming Lu ¹, Megan Lang ², John Jones ³, Irena Creed ⁴, Jennifer Dungan⁵, Andrew Michaelis⁵, Ramakrishna Nemani⁵

¹ Department of Geographical Sciences, University of Maryland; ² US Fish and Wildlife Service National Wetland

Inventory; 3 US Geological Survey; 4 University of Western Ontario; 5 NASA Ames Research Center

NASA LCLUC Science Team Meeting, Rockville, MD, April 12 – 14, 2017

Need for Inundation Monitoring

- Surface inundation plays important roles in Earth system processes
	- land-atmosphere energy balance (Krinner 2003),
	- carbon and nutrient cycles (Shindell et al. 2005; Fox et al. 2014; McDonough et al. 2014),
	- surface groundwater dynamics (Winter 1999; Becker 2006).
- Wetlands and other intermittently inundated areas provide a range of ecosystem services
	- water purification,
	- climate and flood regulation,
	- natural hazards, food and fiber, and recreation (Millennium Ecosystem Assessment 2005),
	- Biodiversity (Millennium Ecosystem Assessment 2005).
- Aquatic ecosystems are being lost at alarming rates (Millennium Ecosystem Assessment 2005).
	- Pressure from a growing human population
	- Climate change
- Inundation affects human welfare
	- Water availability (e.g. for human consumption)
	- Water-borne diseases
	- Flooding

Need for High Spatial Resolutions

(Verpoorter et al. 2014) (Downing 2006)

Growing Number of Global Water Datasets

Limitations of Water Classifications

Prairie Pothole Region (Saskatchewan, Canada)

Inundation Highly Variable Over Time

Inundation Probability in Different Seasons over the Last Three Decades over the Everglades

Research Objectives

- Develop and demonstrate improved capability to monitor terrestrial inundation
	- Develop automated algorithms suitable for inundation monitoring at the global scale using Landsat-8/Sentinel-2 (L8S2) optical data and Sentinel-1 (S1) SAR data.
		- Water/non-water classification
		- Subpixel Water Fraction (SWF)
	- Calibrate and test extensively
		- Test sites in US, Canada, Europe, Australia
	- Generate near daily inundation products for United States and southern Canada

Overall Approach

Classification algorithms

1. DSWE 2. Index/thresholding 3. Machine learning: SVM, RF

Subpixel estimation algorithms

1.Regression Trees 2.Self-training

Optical-SAR Integration

- Cross-sensor calibration
- Time series statistics (e.g. inundation probability)

Automation key to near daily monitoring at continental to global scales.

Inundation Mapping Driven by Lidar Based Training Data

(Huang et al. 2014)

Dynamic Surface Water Extent (DSWE) Classification Algorithm for L8/S2

- DSWE tests:
	- 1. MNDWI > 123 [scaled by 10000]
	- 2. MBSRV > MBSRN
	- 3. $AWE_{ch} > 0$
	- 4. MNDWI > -5000* & SWIR1 < 1000 & NIR < 1500
	- 5. MNDWI > -5000 & SWIR2 < 1000 & NIR < 2000

$$
MNDWI = \frac{G - SWIR1}{G + SWIR1}
$$

$$
MBSRV = G + R
$$

$$
MBSRN = NIR + SWIR1
$$

 $AWESH = B + 2.5G - 1.5MBSRN - 0.25SWIR2$

(Jones 2015)

Subpixel Water Fraction Algorithm

 $\mathbf{0}$

Initial Test Sites

Saskatchewan Prairie Pothole (PPR)

- small seasonal and ephemeral ponds fed by snowmelt in early spring and late summer storms
- airborne LiDAR, field surveys

Delmarva Peninsula (DEL)

• depressional wetlands (bays), flats and forested wetlands in riparian zones

• airborne LiDAR

Florida Everglades (EVE)

- wet prairie and sawgrass marsh, evergreen forest, mangrove, rush
- water level gauges, local DEM

Continuous Water Level Measurements Over the Everglades

 0.8

 0.6

 0.4

 0.2

Time Series SWF Tracks Ground Observations

 \circ estimated \triangle reference

Comparison with Lidar Based Reference Data

2007-03-29 2009-03-18

100

60

100

Pond Area Estimation Over Saskatchewan PPR

- Pond perimeters delineated in late spring / early summer of 2005
- Purpose: establishing transects for multi-temporal soil moisture measurements
- Smaller ponds (classes 1-3) likely do not represent inundated area (probably 'potential' inundated surface)

Pond Area Estimation Over Saskatchewan PPR

Cloud Is A Major Problem in Optical Observations, But Far Less in SAR Data

Penetration through heavy rainfall in Cand L-band

(Zhong Lu)

SIR-C/X-SAR Images of a Portion of Rondonia, Brazil, April 10, 1994

Water Signal Highly Variable in Radar

Open water

Water with vegetation

Open water with waves

Dark soil / agriculture

Sentinel-1 SAR Water Extent Mapping

 Y° = Gamma naught, α = Incidence angle

**Prior* Mask: DSWE=Dynamic Surface Water Extent, Multi-temporal class probability

Mapping Algorithm 1: Machine Learning Approach

Training Data Derivation Using Multi-Temporal DSWE Products

10 Kilometers Ω 2.5 -5

B. Multi-year water probability

Machine Learning Approach Over Delmarvar

RF_DSWE: Class 2015-03-17

RF_DSWE: Prob. 2015-03-17

Google Earth 2013-10-20

Water Prob. $High: 1$ $Low: 0$

 $1 km$

RF_DSWE

S1 Radar Mapping Over Everglades

S1 Radar Mapping Over Saskatchewan Prairie Pothole Region

Water Prob. $[0, 0.1]$ $[0.1, 0.35)$ $[0.35, 0.65)$ $[0.65, 1]$

Prototype Inundation Time Series from L8/S2/S1

Prototype Inundation Time Series from L8/S2/S1

Large Area Prototype Over North Dakota

- Entire state
- All images available from 04/01/2016 to 10/31/2016
- Landsat 8
	- 234 images
	- Order and SR/cloud mask: ~3 days
	- Mapping: ~30 h x 10 CPUs
- Sentinel-2
	- 841 granules
	- SR/cloud mask: ~28 h x 10 CPUs
	- Mapping: ~35 h x 10 CPUs
- Sentinel-1
	- 59 images
	- Preprocessing: ~36 h
	- Mapping: ~6 h

Large Area Prototype Over North Dakota

Repeat intervals: $1 - 16$ days

Summary

- Automated surface water mapping algorithms developed
	- Optical methods
		- Mature for Landsat
		- A manuscript ready for submission
		- Some adjustment needed for S2
	- Radar methods
		- Tested over multiple sites
		- Need more quantitative assessment
- Limited validation possible
	- High resolution data for determining subpixel fraction
	- Temporal matching critical
	- Gauge data with good DEM desirable
- Initial large area test over ND
	- Tried all available L8, S2, S1 images for summer 2016
	- Preprocessing time >> mapping time
	- Huge saving if preprocessed data available
		- Optical data: at least 50%
		- Radar: > 80%
- Next steps
	- Try out HLS data
	- Ensure optical-radar consistency
	- Develop more validation data sets
	- Scale up to US and Southern Canada
	- Analyze regional/national results