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Increasing community vulnerability to wildfires at WUI

Increasing wildfires in California (17 after 2000, 5 largest in 2020)

Expansion of housing development into the wilderness
- Creating larger WUI areas

- More than 20 million properties susceptible to wildfires
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Majority of wildfire ignition started in/around WUI
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Number of Structures

Increasing structure damages by WUI wildfires in California
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Challenging for fire risk assessment in WUI

* Heterogeneous, dynamic landscapes with human modification
* Challenging for fire behavior modeling and risk assessment
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e Goal: Multi-sensor monitoring and community fire risk assessment
(1) fine grained annual WUI characterization (human settlements and vegetation)
(2) improved understanding of WUI fire behavior and building damage



Mapping building footprints from VHR imagery via Deep Learning

* NAIP VHR imagery at 0.6m to 1m every two years since 2009
* integrated Mobile-UNet and generative adversarial network (GAN)
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Building footprints identified from NAIP aerial imagery

Input Image Ground Truth Predicted Image Input Image Ground Truth Predicted Image
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Tracking new housing development and structure
damage every two years
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Improved mapping of WUI patterns
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All WUI fire days from 2003 — 2020
Machine learning: modeling probability of building damage




Pre-fire Post-fire
Building footprints Damage Survey

l (DINS)

Building damage probability
(% =# damaged / # buildings )

JulianDay DAMAGE
255 * Affected (1-9%)
256 * Destroyed (>50%)
B 257 * Major (26-50%)
Bl 258 * Minor (10-25%)
B 2o - No Damage

* Intermediate scale: within daily fire perimeter



Wildfire-caused building damage risk evaluation

Explanatory Variables
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All WUI fire days from 2003 — 2020
Machine learning: modeling probability of building damage



Fast moving fires caused higher building damage probability
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Impacts of building patterns on Structural Damage

Discrete Buildings

Housing Clusters

SHAP value for
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Higher risk for clustered buildings than
dispersed community, especially when fire spreads
relatively slowly.



Variable importance for building damage risk
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Multi-sensor fine scale WUI fuel mapping

* Woody canopy fuels (shrub/tree crowns)

NAIP imagery at 0.6-1m since 2009
PlanetScope at 3m since 2017
NAIP + PlanetScope

* Fuel structure

Aerial lidar — Radar + GEDI

-> Quantify fuel characteristics

-> tracking fuel treatment (e.g., thinning,
defensible space around houses)

WUI Zones
WUI Intermix

B wul Interfﬁcaar

USGS 3DEP
USGS 3DEP 2019-2020

USGS 3DEP 2017-2018

USGS 3DEP 2015-2016
[ 1 CA County Boundary
[ CA State Boundary




Fine scale WUI canopy fuel mapping: Planetcope

* 3D convolutional neural network (CNN)

n Semi-automatic labeling 9 Planet stacks 9 Deep learning model
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Rasterized crown labels (3x3m)




lear Canopy Helght Model Observed Predicted (Planet 3m)




NAIP pre-fire

'- Tree alive
I Tree mortality
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Dixon, Brown, Zhu, and Jin (2023, under review)




Crown scale canopy mapping from NAIP
NAIP

Bl Trees
B Shrubs
B Buildings




Mask2Former (Facebook Al Research)
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* Masked-attention Mask
Transformer (Mask2Former), a
deep network capable of
addressing any image
segmentation task (panoptic,
instance or semantic).

* State-of-the-art (SOTA) results on
several segmentation benchmarks.

[Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, and Rohit Girdhar. “Masked-attention Mask Transformer for Universal Image Segmentation.” CVPR 2022.]



Segment Everything Everywhere All at Once

SEEM “ Decoder
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(b) Human-Model Interaction

* Our model (SEEM) can perform any segmentation task, such as semantic, instance, and
panoptic segmentation, in open-set scenarios.

* Supports visual, textual, and referring region prompts in any combination, allowing for

versatile and interactive referring segmentation.

[Xueyan Zou, Jianwei Yang, Hao Zhang, Feng Li, Linjie Li, Jianfeng Gao, and Yong Jae Lee. “SEEM: Segment Everything Everywhere All at Once.” arXiv, 2023. (On going

work)]



Conclusions and next steps

* Deep learning based building footprints detection from NAIP aerial imagery
allows for tracking WUI building dynamics every two years.

* Crown scale woody fuels mapping with Planet and NAIP was enhanced with
deep learning such as CNN.

* WUI building damage was driven by rapid fire spread, building patterns and
other community related variables. ™ ‘

* Next steps — toward fire-safe communities

Data fusion for scalable WUI characterization;
Adapting more advanced deep learning framework to improve object identification -
Improved understanding of the linkages between fuels, fire behavior, and structure damage

Tools for community fire vulnerability assessment
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