Global Hotspots of the Wildland-Urban Interface

Volker C. Radeloff¹, Franz Schug¹

A. Carlson¹, H. Cox¹, N. Kasraee¹, K. Pfoch¹, S. Martinuzzi¹, A. Bar-Massada², T. Hawbaker³, D. Kaim⁴, M. Mockrin⁵ ¹SILVIS Lab, University of Wisconsin-Madison, USA; ²U. Haifa, Israel; ³USGS Denver; ⁴Jagiellonian U. Krakow, Poland; ⁵USFS Baltimore

Introduction

The WUI is where houses and wildland vegetation meet or intermingle

"Interface WUI"

SILVIS Lab Spatial Analysis for Conservation and Sustainability

CC&E Joint Science Workshop, College Park Maryland, 5/8/2023

"Intermix WUI"

Introduction

SILVIS Lab Spatial Analysis for Conservation and Sustainability

Introduction

The New Hork Times

As Wildfires Grow, Millions of Homes Are Being Built in Harm's Way

By Nadja Popovich and Brad Plumer Sept. 9, 2022

Across the Western United States, wildfires are growing larger and more severe as global warming intensifies. At the same time, new data shows, more Americans than ever are moving to parts of the country more likely to burn, raising the odds of catastrophe.

SILVIS Lab Spatial Analysis for Conservation and Sustainability

Goals

- Mapping the Global Wildland Urban Interface
 - -Global WUI and fire
 - -Global WUI and biodiversity
- Mapping buildings and WUI with CNNs
- Long-term change in global WUI hotspots with SMA

SILVIS Lab Spatial Analysis for Conservation and Sustainability

, NASI

Spatial Analysis for Conservation and Sustainability

Overall accuracy: 82% for WUI vs. NonWUI 80% for Intermix vs. Interface WUI 10,000 validation points

WUI Area

WUI Population

Forest/shrubland/wetland-dominated WUI Grassland-dominated WUI

Forest/shrubland/wetland-dominated WUI Grassland-dominated WUI

Forest/shrubland/wetland-dominated WUI Grassland-dominated WUI

Spatial Analysis for Conservation and Sustainability

NASA

Goals

- Mapping the Global Wildland Urban Interface
 - -Global WUI and fire
 - -Global WUI and biodiversity
- Mapping buildings and WUI with CNNs
- Long-term change in global WUI hotspots with SMA

Mapping the WUI with CNNs

Kasraee, N. K., T. J. Hawbaker, and V. C. Radeloff. 2023. Identifying building locations in the wildland-urban interface before and after fires with convolutional neural networks. *International Journal of Wildland Fire*, in press.

Mapping the WUI with CNNs

Kasraee, N. K., T. J. Hawbaker, and V. C. Radeloff. 2023. Identifying building locations in the wildland-urban interface before and after fires with convolutional neural networks. *International Journal of Wildland Fire*, *in press*.

Carlson, A., D. H. Helmers, T. J. Hawbaker, M. H. Mockrin, and V. C. Radeloff. 2022. The wildland-urban interface in the United States based on 125 million building locations. *Ecological Applications*, 2022: e2597.

Change in global WUI Hotspots

Change in global WUI Hotspots

Change in global WUI Hotspots

Conclusions

- Global WUI: 5% of land area, 50% of the population
- People near fires: 2/3s live in the WUI
- WUI concentrated in
 - biodiversity hotspots

Conclusions

- Global WUI: 5% of land area, 50% of the population
- People near fires: 2/3s live in the WUI
- WUI concentrated in biodiversity hotspots

Bar-Massada, Radeloff, and Stewart. 2014. BioScience

Thank you!!!

