2024/02/01

International Meeting on Land Cover/Land Use Change (LCLUC) in South/Southeast Asia Synthesis in Hanoi, Vietnam

Dynamic LULC mapping for agriculture in Suphanburi, Thailand using ALOS-2/PALSAR-2

University of Tsukuba (Japan) College of Agro-Biological Resource Sciences, B4 金居新大 **Shindai Kanai** Peraya Tantianuparp^{*1}, Sota Hirayama^{*2}, Takeo Tadono^{*2},

Koichi Imamura^{*3}, Naoyoshi Hirade^{*3}, Fumi Ohgushi^{*3}, Ryo Satake^{*3}, Kenlo Nasahara (Nishida)^{*4} *1: HII, *2: JAXA, *3:RESTEC, *4: University of Tsukuba

Joint research of

 Synthesize strengths and knowledge of both to make a good product for Thai water resource management. Land-use Land-cover (LULC) map is

A color-coded image of the land appearance using satellite data.

If we focus on Land cover (LC) category on cropland...

Cropland

Dynamic changes happen on croplands.

Water demand and methane emissions change accordingly.

Purpose of this reserach

Dynamic LULC mapping Capture a moment on agricultural lands in LULC map

But, it is hard to get a cloud-free image during rainy season in the tropic....

Satellite data for dynamic classification **ALOS-2/PALSAR-2 full polarimetric**

Sentinel-2 (2023/09/02)

PALSAR-2 (2023/08/05) HH: Red, HV: Green, VV: Blue

Feature values

- 1. HH (amplitude)
- 2. HV (amplitude)
- 3. VH (amplitude)
- 4. VV (amplitude)
- 5. Double bounce component (Yamaguchi decomposition)
- 6. Volume scattering component (Yamaguchi decomposition)
- 7. Surface scattering component (Yamaguchi decomposition)
- 8. Helix scattering component (Yamaguchi decomposition)
- 9. Even (Pauli decomposition)
- 10. Cross (Pauli decomposition)
- 11. Odd (Pauli decomposition)
- 12. Entropy (Entropy-Alpha decomposition)
- 13. Alpha (Entropy-Alpha decomposition)
- 14. Anisotropy (Entropy-Alpha decomposition)
- 15. Texture image

Observed every 2 weeks since 2022/05/28 (several days not observed) High Resolution Mode (HBQ). Spatial resolution is 6 m.

Conducted field survey during my study abroad in Thailand Took photos of Land-cover and collected locational information

Dates

- 2022/08/16-18
- 2022/10/27-28
- 2023/01/26
- 2023/03/24
- 2023/05/16
- 2023/08/03 total: 6 times

Land-cover change on sugarcane field (harvest)

Method^② Spatial averaging for satellites data $\overline{\sigma}_0 = 10^{-8.3}\overline{DN^2}$

My method:

Normal method (for static LULC)

But I took the average of DN for entropy-alpha decomposition and texture image

Average values for each polygon (cropland) on 1 image

In dynamic LULC mapping, it is impossible to combine many satellite images because time period of observation is limited.

So, I tried to reduce noise by spatial average for each field.

Method^② Spatial averaging for satellites data

Auto-made polygons

Segmentation algorithm (eCognition) over PlanetScope image

Handmade polygons (for comparison) Took more than 50 hours to make

• Bare land

Method③ Classification "Dynamic classification"

Sites for field survey

Used Site 3 for validation of the Dynamic classifier trained in Site 1, 2, 4 and 5.

Only PALSAR-2 data is used for input to Dynamic classification.

Method^③ Classification "Dynamic classification"

Training data

6 field surveys

Dynamic categories

- Dried with crop (**D w/ C**)→278 points
- Dried without crop (D w/o C) \rightarrow 221 points
- Flooded with crop (**F w/ C**) \rightarrow 147 points

Method Workflow of classification (Dynamic + Static)

Result(1) Cropland / Non-cropland classification

Cropland / Non-cropland classification (OA: 91.44%)

Result⁽²⁾ Static classification

Result Dynamic classification in Site3

Result My classification and field photos Sugarcane

20

Result Dynamic classification on auto-made polygons

Expand the classification 20 km × 20 km, with same the Dynamic classifier

2022/09/03 Rainy season

2022/11/12 Rainy season

2023/02/04 Dry season

2023/05/13 Dry season

2023/08/05 Rainy season

Result5 **Overlapping of Dynamic and Static** The final product

2023/04/01

2023/05/13

2023/08/05

2022/09/03

2022/11/12

2023/02/04

2023/04/01

2023/05/13

2023/08/05

2023/08/05

Google Earth

Center of this map (99.965688,14.555412)

2022/09/03

2022/02/04

2022/11/12

2023/04/01

2023/05/13

2023/08/05

Dried without crop Flooded with crop Forest Built-up Permanent water

Google Earth

Center of this map (99.894441,14.502216)

2022/09/03

2022/02/04

2022/11/12

2023/08/05

Dried with crop
Dried without crop
Flooded with crop
Forest
Built-up
Permanent water

2023/04/01

Result6 Auto-made vs Handmade polygons

2022/09/03

Auto-made polygons

Handmade polygons Pixel

2022/09/03

Auto-made polygons Handmade polygons Pixel

1.7 km

Result⑦ Comparison with existing maps

My product (2022/09/03)

ESA WorldCover 10 m V200 (2021)

DynamicWorld v1 (2022/09 composite)

Disucussion

- Succeeded in dynamically classifying agricultural lands by only PALSAR-2 data with high accuracy.
 - By using full polarimetry, many feature values were available.
 - By visiting the site multiple times, high-quality training data were available.
- Succeeded in creating more detailed maps.
 - By averaging within each polygon, speckle noises was reduced without losing spatial features.
 - Although Handmade polygons was the best, Auto-made polygons are also sufficient to understand the land cover of agricultural land.