

INTERNATIONAL MEETING ON LAND COVER/LAND USE CHANGE IN SOUTH/SOUTHEAST ASIA AND SYNTHESIS

GE®ì

PM_{2.5} MAPPING AND MONITORING IN VIETNAM USING SATELLITE AND GROUND-BASED DATA

Thanh T.N. Nguyen

¹University of engineering and technology, Vietnam National University, Hanoi

Hanoi, 31 January - 2 February 2023

OUTLINE

- Introduction
- Satellite PM_{2.5} estimation in Vietnam
- Use cases of $PM_{2.5}$ datasets
- The Status of PM_{2.5} and its impact on public health in Vietnam 2021
- POPGIS An application service for air pollution management and analysis in Vietnam
- Conclusion

INTRODUCTION

STATE OF AIR POLLUTION IN VIETNAM

- Air pollution is one of the major environmental challenges facing nations worldwide.
 - Exposure to air pollutants causes over 6 million early deaths annually, with nearly 99% of the global population living in areas with unsafe concentrations of ambient air pollutants (Cohen et al., 2017; Health Effects Institute, 2020; World Health Organization, 2022)
 - The health effects of air pollution extend beyond respiratory illnesses. Residents breathing polluted air have higher rates of heart disease, cancer, and diabetes (Bourdrel et al., 2017; Martoni, 2018; Turner et al., 2020). Recent evidence also indicates a link between chronic exposure to air pollutants and susceptibility to COVID-19 (Kim and Bell, 2021; Wu et al., 2020).
- Air pollution in Vietnam has been and continues to be a concerning issue due to increasing emissions from domestic sources and long-range transport, especially at big urban areas.

RANK	COUNTRY	SCORE	REG	RANK	COUNTRY	SCORE	REG
1	Iceland	96.0	1	121	Liberia	28.3	11
2	Sweden	94.0	2	122	Haiti	28.2	32
3	Finland	93.5	3	123	Cabo Verde	28.0	12
4	New Zealand	93.2	4	124	Georgia	27.9	8
5	Norway	92.4	5	125	Bosnia and Herzegovina	27.8	18
6	Australia	91.1	6	126	Uganda	27.4	13
7	Ireland	89.1	7	127	Niger	27.1	14
8	Canada	88.0	8	128	São Tomé and Príncpe	26.8	15
9	Switzerland	84.3	9	129	Mali	26.7	15
10	France	82.0	10	130	Viet Nam	26.5	18
11	Luxembourg	81.0	11	131	Burkina Faso	26.1	17
12	Denmark	80.5	12	132	Cambodia	25.9	19
13	Japan	78.9	1	132	Philippines	25.9	19
14	United Kingdom	78.6	13	134	Gabon	25.7	18
15	Portugal	78.1	14	135	Dem. Rep. Congo	25.1	19
16	United States of America	77.0	15	136	Rwanda	24.7	20
17	Netherlands	76.8	16	137	Chad	24.3	21
18	Germany	75.2	17	138	Zimbabwe	23.9	22
19	Austria	75.0	18	139	Zambia	23.6	23
20	Belgium	74.6	19	140	Kyrgyzstan	23.5	9
20	Estonia	74.6	1	141	Angola	23.1	24
22	Spain	74.0	20	142	Equatorial Guinea	22.9	25
23	Malta	73.2	21	143	Morocco	22.7	15
24	Italy	69.4	22	144	North Macedonia	22.6	19
25	Singapore	69.2	2	144	Laos	22.6	21

Vietnam ranked at 130/180 nation on air quality in 2022 (EPI, Wolf et all., 2022

WHEN DID AIR POLLUTION START?

Annual average of PM2.5 in Hanoi, Luc Nam, and Ho Chi Minh city before 2009 * 2010 2011 2012 2013 2014 2015 2016 2017 -QCVN 05:2013/BTNMT

Annual average of PM2.5 in Viet Tri, Hanoi, HaLong,

Hue, Da Nang, and Ho Chi Minh city from 2010 – 2017*

The redline is Vietnamese standards (25 μ g/m³) for annual average $PM_{2.5}$ (WHO recommendation is 5 μ g/m³ in 2022)

^(*) Nguyen et al, "Current status of PM_{2.5} and its mitigation in Vietnam"

OBJECTIVES

- Supplementing PM_{2.5} monitoring at country-wide using satellite observation;
- Developing products to provide status of PM_{2.5} concentrations across the country to communities in different forms;

Published article: Ngo et al, 2023. A daily and complete PM2. 5 dataset derived from space observations for Vietnam from 2012 to 2020, Science of The Total Environment 857, 159537

SATELLITE DERIVED PM_{2.5} IN VIETNAM

GOALS

 Produce and validate daily PM_{2.5} map over Viet Nam using multisourced data and a machine learning model

- Difficulties encountered in Vietnam
 - Data missing
 - Lack of ground monitoring stations, data missing, ...
 - Missing satellite data due to cloud, orbit track, bright surface,...
 - Data quality
 - Ground data
 - Satellite data

RELATED WORK

Author	Study Area	Study Priod	No of station	Methodology	Results
Gupta et al 2016	Global	2000-2002	26	Linear Regression (LR)	$R^2 = 0.92$
van Donkelaar et al 2016	Global	1998-2014	_	GEOS Chem Geographical Weighted Regression (GWR)	CV R ² = 0.81
Xuefei Hu et al 2013	US	2003	119	GWR	CV R ² = 0.71, RMSE = 3.81 µg/m ³
Ma et al 2014	China	2012-2013	835	GWR	CV R^2 = 0.64, RMSE = 32.98 µg/m ³
You et al 2016	China	2014	943	GWR	CV R ² = 0.85, RMSE = 24.86 µg/m³, MRE = 19.7%
Kloog et al 2012	US	2000-2008	161	Mixed Effect Model (MEM)	CV R ² =0.82, RMSE = 1.38 µg/m ³
Kloog et al 2014	US	2003–2011	161	MEM	CV R^2 = 0.88, RMSE = 2.33 µg/m ³
Lee et al 2016	US	2006-2012	123	MEM	CV R^2 = 0.66, RMSE = 5.69 µg/m ³
Just et al 2015	Mexico	2004-2014	12	MEM	CV R^2 = 0.724, RMSE = 5.55 µg/m ³
Zheng et al 2015	China	2013	101	MEM	CV R ² : 0.77 - 0.8, RMSE: 12.47 - 23.07 µg/m³
Thanh et al 2014	Hanoi, Vietnam	2010-2012	1	LR Support Vector Regression (SVR)	- LR: Pearson r = 0.598, RMSE = 31.071 μg/m³ - SVR: Pearson r = 0.593, RMSE = 31.674 μg/m³
Thanh et al 2015	Vietnam	2010-2014	6	LR	- MODIS Aqua: R2 = 0.602, RMSE = 8.53 μg/m³, RE = 33.35% - MODIS Terra: R2 = 0.58, RMSE = 8.78 μg/m³, RE = 53.35%

TARGET DATA

 Ground PM_{2.5} measurements from standard stations with hourly mean, from 2012 – 2021.

INPUT DATA

Туре	Parameter	Description	Sources
Raster Maps	Aerosol Optical Depth (AOD)	 AOD from MODIS onboards TERRA and AQUA and VIIRS on Suomi NPP Spatial resolution 6km (VIIRS AOD) 3 km (MODIS AOD) Each product has 2-5 images captured some areas in Vietnam every day 	NASA, NOAA
Raster Maps	Meteorology parameter (Temperature, RH, Pressure, Wind Speed, PBLH)	4 maps every day (0h, 6h, 12h, 18h) at 5km spatial resolution	Results of WRF using ERA-5 Reanalysis data as input and running for Vietnam
Raster Maps	Traffic	Traffic information (name, type, length, width,)	Vietnam Department of Surveying, Mapping and Geographic Information
Raster Maps	Normalize Difference Vegetation Index (NDVI)	Product from MODIS Terra: 1 image/15 days at 250m spatial resolution	NASA
Raster Maps	Population Density	Annual Average, 100m spatial resolution	WorldPop

METHODOLOGY

MODEL PARAMETER SELECTION

Parameter	Coefficient	p-value	VIF
AOD	0.31	0.001	1.14
Humidity	-0.46	<2e-16	1.29
NDVI	-0.23	3.37e-07	1.53
Road Density	0.3	<2e-16	1.67
PBLH	-0.41	5.42e-10	1.2
Terrain	1.03	<2e-16	1.29

- The signs of the coefficients reflect the correlation relationship between the parameter and the $PM_{2.5}$ concentration.
- All model parameters are statistically significant (p-value < 0.05) and there is no multicollinearity issue (VIF < 3).

MODEL EVALUATIONS AND CROSS-VALIDATION

		Ν	r	R ²	RMSE (µg/m³)	MRE (%)
Model	Primary (wAOD)	10,614	0.83	0.68	14.14	40.99
validation	Auxiliary (nAOD)	34,208	0.81	0.65	14.8	48.58
10-fold cross	Primary (wAOD)	1,061	0.7	0.49	18.14	52.71
validation	Auxiliary (nAOD)	3,420	0.75	0.56	16.64	54.2
Leave One	Primary (wAOD)	-	0.67	0.49	14.96	57.9
Station Out Cross Validation	Auxiliary (nAOD)	-	0.67	0.5	14.11	58.14

DATA COVERAGE

- Maps estimated by primary model have data coverage from 50-75%
- Combined maps have data coverage at ~ 100%

A map estimated by Primary model (wAOD)

21°

18

15° N

12°

Thailan

M25 conce

A combined map

MAP VALIDATION

2012-2020			Study's	maps		Global maps*				
	No of samples	s R ² Pearson ı		RMSE (µg/m³)	MSE MRE g/m³) (%)		Pearson r	RMSE (µg/m³)	MRE (%)	
Daily mean	13,886	0.75	0.87	11.76	36.57	-	-	-	-	
Monthly average	480	0.79	0.89	8.5	25.93	0.58	0.76	11.9	37.07	
Annual Average	42	0.8	0.9	5.6	17.07	0.65	0.81	7.21	21.6	

Validation of monthly and annual maps with ground measurements & Comparison with the global maps

* Van Donkelaar et al, Environmental Science and Technology 2021

PM_{2.5} DATASETS

USE CASES

- Used for **lecturing materials**;
- Assess the impact of the COVID-19 pandemic and open burning on air quality;
- Construct **provincial environmental performance index**, that reflects the environmental health of each province in Vietnam;
- Construct provincial greenness index, that contributed as a part of province competitiveness in Vietnam;
- Assess the effects of PM_{2.5} on children (hospital admission for children, Child-centered climate risk mapping) and adults (mortality, respiratory diseases, cardiovascular diseases);
- Use as a reference source to assess current status of air pollution and develop Guideline for health impact assessment due to air pollution, aimed to support local medical and environmental officers, to implement the Provincial Air Environment Management Plan under Article 12 and 13 of the Environmental Protection Law;

Full report at <u>Status of PM2.5 and Its Impact on Public Health in</u> <u>Vietnam 2021 - LASER PULSE</u> GE

THE STATUS OF PM_{2.5} AND ITS IMPACT ON PUBLIC HEALTH IN VIETNAM 2021

THE STATUS OF DM AND ITS

THE STATUS OF PM_{2.5} AND ITS IMPACTS ON PUBLIC HEALTH IN VIETNAM 2021

- Goals
 - Provide insight into status of $PM_{2.5}$ across Vietnam in 2021 and assess the health benefit if $PM_{2.5}$ pollution was controlled
- Target audience
 - General public, Government agencies, Media/Press
- Content
 - Status of PM_{2.5} on a national scale (analysis at provincial level)
 - Status of PM_{2.5} at 5 representative cities (analysis at district level)
 - Relation of PM_{2.5} and urbanization
 - PM2.5 during social distancing period due to COVID-19
 - Health benefit at provincial and district levels if PM_{2.5} was controlled
 - Recommendations
- Data
 - PM_{2.5} maps; Death percentages (GSO)

THE STATUS OF PM_{2.5} NATIONWIDE

Annual mean of PM_{2.5} concentration in 2021

Mean of $PM_{2.5}$ concentration and populationweighted $PM_{2.5}$ concentration by province in 2021

THE STATUS OF $\ensuremath{\mathsf{PM}}_{2.5}$ IN URBAN AREAS

100

80

60

40

20

%

- As of December 2021, Vietnam has 2 cities which are categorized as Special urban areas, Hanoi and Ho Chi Minh city, 22 type I urban areas, 33 type II, 47 type III, 94 type IV and 674 type V areas.
- PM_{2.5} concentration has a tendency to increase as the level of urban development increases.

Percentage of urban areas with 2021 averaged PM_{2.5} concentration exceeding QCVN 05:2013/BTNMT

Urban classification in Vietnam from 2021-2023 (Decision 241/QĐ-TTG)

THE STATUS OF PM_{2.5} IN HANOI

district and compared to 2020 and 2019

THE STATUS OF PM_{2.5} IN HANOI

Monthly $PM_{2.5}$ concentration in 2021

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	AVG
021	80.9	41.8	37.1	28.0	23.2	25.6	19.5	19.7	22.5	27.2	37.6	55.9	34.9
020	44.1	53.9	37.5	35.1	26.0	23.5	22.1	17.8	22.3	25.7	43.1	51.8	33.6
019	50.2	35.9	40.3	31.7	32.1	24.2	22.5	28.6	40.6	41.2	54.8	60.2	38.5
Good Unhealthy for sensitive groups Very Moderate Unhealthy 6							Very unh Hazardou	ealthy Is					

Monthly mean of PM_{2.5} concentration

Percentage of days at different levels of air quality in Hanoi

POPGIS – AN APPLICATION SERVICE FOR AIR POLLUTION MANAGEMENT AND ANALYSIS IN VIETNAM

CONCLUSION

CONCLUSION

- Satellite-derived PM_{2.5} concentration maps can be used for air quality monitoring, environmental index development, health impact assessment, national/provincial air quality management plans.
- Prioritize air quality monitoring and management in the order of $PM_{2.5}$ status of provinces and cities and urbanization level.
- Periodically review and improve the national technical regulations on air quality and emission sources.
- Invest in advanced machine learning techniques for air pollution
- Promote research to identify the source contributors of $\rm PM_{2.5}$ and other air pollutants.

More information at <u>https://laserpulse.org/portfolio/improving-air-pollution-monitoring-and-</u> management-of-vietnam-with-satellite-observation/

THANK YOU FOR YOUR ATTENTION