



#### A multi-dimensional, Mediterranean assessment of urban land change for the evaluation of interconnected climate risks

Eleanor C Stokes (PI), NASA Meredith Reba (Co-I),Yale University Karen Chen (New PI), Yale University <u>karen.t.chen@yale.edu</u>







Yale Institute for Biospheric Studies

## **Multi-dimensional urbanization**





The morphology of the built environment affects heat intensity

Partners: Levent Genc, Turkey Melis Inalpulat, Turkey Nektarios Chrysoulakis, Greece Dimitris Poursanidis, Greece







## **The Mediterranean region**





Fethiye, Turkey



Alexandria, Egypt

## **Project goals**

- Develop and apply methods for measuring multi-dimensional urbanization in the Mediterranean region:
  - Urban infrastructure investment
  - Infill / Intensification
  - 3D growth
- Understand interconnected climate risks

### **Dimension 1**

# Analyzing infrastructure investment by integrating night- and day-time urban maps



D4) infrastructural investment

#### Method

**Data Resources** 

#### Pre-Processing



### **Comparing NTL and WSF urbanization**



urbanization Urbanization FP TP Commission error: Percentage of WSF-non-urbanization being identified as urbanization in the NTL profile Omission error:

NTL:

30

NTL: non-

Omission error: Percentage of WSF-urbanization not being identified in the NTL profile

#### **Disparity of urbanization**



## **Disparity of non-urbanization**

#### **Dark Growth**

Absent public lighting infrastructure (informal settlements)







# Subpixel estimate of urban land cover intensity and the identification of infill processes



11

#### Landsat satellite image



Resolution: 30m Revisiting: 16 days 1972 – to date

## Commercial satellite image from Google Earth



Resolution: 1m Revisiting: months to years Only updated images are freely available

## Fractional urban land cover

- Impervious surface
- 30 m x 30 m grids using Landsat
- 40 cities and towns, stratified by population, elevation, and country and natural land cover





(c) Fractional data



(b) Building footprint



#### Datasets





## **Dimension 3**

## Identifying vertical growth using Landsat data



D2) vertical growth





Contents lists available at ScienceDirect

Remote Sensing of Environment



journal homepage: www.elsevier.com/locate/rse

Mapping horizontal and vertical urban densification in Denmark with Landsat time-series from 1985 to 2018: A semantic segmentation solution



Tzu-Hsin Karen Chen<sup>a,b,c,\*</sup>, Chunping Qiu<sup>d</sup>, Michael Schmitt<sup>d,e</sup>, Xiao Xiang Zhu<sup>d,e</sup>, Clive E. Sabel<sup>a,b</sup>, Alexander V. Prishchepov<sup>c</sup>

## Vertical growth detection

- Common approaches:
  - Regression: Indicator using Sentinel-1 Ground Range Detected data
  - Classification: Local climate zones
- Research gap: time series height analysis
- Goal: validate and understand vertical growth in the Mediterranean region







#### Next? Hotspots of urbanization-climate compound risks

- Heat waves
- Flooding risks
- Human health
- Biodiversity



#### **Postdoc and PhD opportunities**





#### Team:

Tzu-Hsin Karen Chen Eleanor C Stokes Meredith Reba

#### RAs:

Wei Chen Andrew West

#### Contact:

<u>karen.t.chen@yale.edu</u> <u>healthurbanization.com</u>

#### **Collaborators**:

Levent Genc Melis Inalpulat Nektarios Chrysoulakis Dimitris Poursanidis

#### Supports:



Yale Institute for Biospheric Studies

# **Backup slides for Q&A**

## **Biodiversity**



Johnson et al., 2017, Science



Kibera, Nairobi © Johnny Miller/Thomson Reuters Foundation



## **Materials and Study Area**

- Monthly Black Marble NTL dataset (2012-2022 April, 124 months) at Near-Nadir Angle
- Reliable urban NTL time-series (3 layers of quality control)
- Urban areas with E>0.59, ε>0.93
- 18-month smooth





## **Clustering & Classification**

15 clusters: mean values

Archetypes of infrastructure development







(a) constant infrastructure development (b) slowing infrastructure development (c) accelerating infrastructure development (d) no new development (e) deurbanization/declining infrastructure intensity and use.

time