Greenhouse Gases Fluxes Across Land-Use Change Gradient in Sabah, Malaysia

Justin Sentian*, Melissa Leduning*, Julia Drewer, Ute Skiba

*Climate Change Research Group, Faculty of Science and Natural Resources Universiti Malaysia Sabah Centre for Ecology & Hydrology, UK

Phnom Phenh, Cambodia, 08-10 August 2022

Kalabakan, Tawau

Oil palm land area in Malaysia and Indonesia

Oil palm land area (hectares)

(Source: USDA, 2020)

• Physico-chemical: soil moisture conditions, etc

- Soil $N₂O$ emission rates were varied but relatively larger in Oil Palm than Forests (Primary & Logged-over Forest)
- Management practices have a significant influence on GHG fluxes

STUDY AREA: NORTH BORNEO (SABAH), EAST MALAYSIA

Map of SAFE Project Research area in Malaysia

Legend

- SAFE Project area ٠
	- Sabah, North Borneo

STUDY AREA: NORTH BORNEO (SABAH), EAST MALAYSIA

Map of SAFE Project Research area in Sabah

Legend

SAFE Project area

Sabah, North Borneo

STUDY AREA: SAFE PROJECT RESEARCH SITE

Map of sampling sites in SAFE Project Research area

Legend

- Sampling site ×,
- River

STUDY SITE: FOREST SITES

Logged forest edge (LFE) Fragmented forest B (FFB) Fragmented forest E (FFE)

STUDY SITE: OIL PALM PLANTATION

FIELD MEASUREMENTS (Parameters and sampling frequency)

Influence of land use changes on GHGs fluxes

A.

Auxiliary physical and chemical soil measurements

B.

Soil greenhouse gas

(i) Soil nitrous oxide and methane fluxes (ii) Soil respiration (CO_2) fluxes

GHGs fluxes measurement

Portable infrared analyser GHG chamber

Every 2 months for 2 years

- Soil N₂O, CH₄, CO₂ fluxes
- Soil NH_4 , NO_3
- Soil moisture, pH, bulk density
- **Soil and litter total** carbon: total nitrogen
- **Soil and air temperature**
- **Precipitation**

Agilent 7694E Headspace sampler

Thermo 42C NO-NO₂-NO_x Analyzer

- Soil N_2O , CH_4 , CO_2 fluxes
- Soil NH_4 , NO_3
- Soil moisture, pH
- soil total organic carbon

Oil Palm (OP2), Oil Palm (OP7), Riparian (RR1)

36 days

Logged Forest (FE), Fragmented Forest (FFE), Riparian (RR2)

22 days

GHG column

NITROUS OXIDE (N₂O)

Posterior probability density of the mean nitrous oxide flux from each land use, estimated by the Bayesian GLMM.

METHANE (CH₄**) (Spatial & Temporal Variability)**

 $-$ OP2 \star -OP7 \cdots \bullet \cdots OP12

CARBON DIOXIDE(CO₂**)**

Greenhouse gas, soil respiration, and soil mineral nitrogen

Greenhouse gas fluxes (N₂O-N, CH₄-C, soil respiration CO₂-C) and soil mineral nitrogen (NH₄-N and NO₃-N) averaged over the entire measurement period (Jan 2015 – Nov 2016) by land-use. N = number of individual data points, sd = standard deviation; forest = logged forest, OP = oil palm, RR = riparian reserve.

SOIL NITRATE AND SOIL AMMONIUM

iii. Soil nitrate and ammonium

SOIL pH AND SOIL BULK DENSITY

iv. Soil pH v. Soil bulk density (soil compaction)

SOIL TOTAL CARBON AND SOIL TOTAL NITROGEN

LEAF LITTER TOTAL CARBON AND LEAF TOTAL NITROGEN

vii. Leaf litter total carbon and total nitrogen

Correlation between GHG fluxes and soil moisture content (SMC)

Soil moisture content range:

NO and N2O temporal variability

(Controlled Laboratory Incubations)

Summary comparison of the different land

uses (Controlled Laboratory Incubations)

CONCLUSIONS

GHGs Fluxes Variability:

- N₂O fluxes in Sabah from logged forest and OP on mineral soil were higher from oil palm plantation than logged forest
- CH₄ fluxes were relatively higher in logged forest than OP albeit with very high variability.
- CO2 fluxes were relatively higher in logged forest than OP albeit with high variability.

Influence of Physico-chemical Properties:

- Logged forest and oil palm soils have equally high potential for $N₂O$ and NO emissions following an increase in soil moisture, while riparian reserve soil release constantly lower rates of $N₂O$ and NO independently of soil moisture condition.
- The nitrogen based mineral fertilization induced the $N₂O$ emission in soils, suggesting enhanced GHG emission potential after conversion of forest land for agriculture use.
- Microorganisms are key drivers for C-and N-cycling in soils, modulating the emissions of primary GHGs $(CO₂, CH₄$ & N₂O)

Drewer et al (2021) – Biogeosciences 18(5):1559-1575, DOI 10.5194/bg-1559-2021

SIGNIFICANT FINDINGS

- This 2-year field study of bi-monthly measurements demonstrated that N_2O fluxes from mineral soils in Sabah were relatively: highest from Oil Palm plantations, moderate from riparian area, and lowest from logged forests.
- Very large spatial and temporal variability of GHGs fluxes and soil chemical and physical properties were encountered at all sites. Mean $CH₄$ fluxes were low with very high variability and showed no clear trend, and the highest range of fluxes was measured in logged forests.
- Under controlled laboratory incubations: Logged forest and oil palm soils have equally high potential for $N₂O$ and NO fluxes following an increase in soil moisture, while riparian reserve soil releases constantly lower rates of $N₂O$ and NO independently of soil moisture condition.
- The nitrogen based mineral fertilization induced the $N₂O$ emission in soils, suggesting enhanced GHG emission potential after conversion of forest land for agriculture use.

ACKNOWLEDGEMENT

This project was funded as LOMBOK (Land-use Options for Maintaining BiOdiversity and eKosystem functions) by the NERC Human Modified Tropical Forest (HMTF) research programme (NE/K016091/1).

NERC BRISSING Land-use **O**ptions for Maintaining **BiOdiversity &** eKosystem functions www.lombok.hmtf.info

www.safeproject.net

 NERC (Natural Environment Research Council)

 SAFE (Stability of Altered Forest Ecosystems) staffs especially **Laulina Mansul** and **Arnold James**

Our collaborators at **CEH: Prof Dr Ute Skiba Dr Julia Drewer**

If you have any further questions, you may email me at **leduning.mm @gmail.com**

Drewer et al (2021). Front. For. Glob. Change, Sec. Forests and the Atmosphere <https://doi.org/10.3389/ffgc.2021.738303>

Methane is emitted or taken up by the soil depending on the balance between methanotrophy and methanogenesis. The latter is favored by anaerobic conditions and is the anaerobic microbial decomposition of organic material, which occurs in wet and organic rich soils; methanotrophy takes place in parts of the soil where oxygen is available (Dutaur and Verchot, 2007). For example, recent studies have suggested that $CH₄$ uptake in oil palm and rubber plantation in Indonesia might be higher in riparian forests than plantations (Hassler et al., 2015; Lang et al., 2020).

Methanotrophs are a subset of the methylotrophic bacteria which can use other one-carbon compounds, including methanol, methylated amines, halomethanes, and methylated compounds containing sulfur [1–7]. Methane monooxygenase (MMO), which catalyzes the oxidation of methane to methanol, is a defining feature of methanotrophs.

Centre for Ecology & Hydrology

