Greenhouse Gases Fluxes Across Land-Use Change Gradient in Sabah, Malaysia

Justin Sentian*, Melissa Leduning*, Julia Drewer, Ute Skiba

*Climate Change Research Group, Faculty of Science and Natural Resources Universiti Malaysia Sabah Centre for Ecology & Hydrology, UK

Phnom Phenh, Cambodia, 08-10 August 2022

Kalabakan, Tawau

Oil palm land area in Malaysia and Indonesia

Oil palm land area (hectares)

(Source: USDA, 2020)

• Physico-chemical: soil moisture conditions, etc

Year	Title	Authors	
2005	The variation of greenhouse gas emissions from soils of Ishizuka et al. various land-use/cover types in Jambi province, Indonesia		
2016	Key unknowns in nitrogen budget for oil palm plantations. A review	Pardon et al.	
2017	Soil nitrogen oxide fluxes from lowland forests converted to smallholder rubber and oil palm plantations in Sumatra, Indonesia	Hassler et al.	
2017	Impact of Land-use Change on Vertical Soil Bacterial Tin et al. Communities in Sabah		
2020	Deforestation for oil palm: impact on microbially mediated methane and nitrous oxide emissions, and soil bacterial communities	Kaupper et al.	

- Soil N₂O emission rates were varied but relatively larger in Oil Palm than Forests (Primary & Logged-over Forest)
- Management practices have a significant influence on GHG fluxes

STUDY AREA: NORTH BORNEO (SABAH), EAST MALAYSIA

Map of SAFE Project Research area in Malaysia

Legend

- SAFE Project area
 - Sabah, North Borneo

STUDY AREA: NORTH BORNEO (SABAH), EAST MALAYSIA

Map of SAFE Project Research area in Sabah

Legend

SAFE Project area

Sabah, North Borneo

STUDY AREA: SAFE PROJECT RESEARCH SITE

Map of sampling sites in SAFE Project Research area

Legend

- Sampling site
- River

STUDY SITE: FOREST SITES

Logged forest edge (LFE) Fragmented forest B (FFB) Fragmented forest E (FFE)

STUDY SITE: OIL PALM PLANTATION

FIELD MEASUREMENTS (Parameters and sampling frequency)

Soil greenhouse gas	Sampling frequency		
N ₂ O	Bi-monthly		
CH₄	Bi-monthly		
CO ₂	Bi-monthly		
Soil volatile organic compounds	Bi-monthly		
Environmental variable			
Soil moisture content	Bi-monthly		
Soil temperature	Bi-monthly		
Ambient temperature	Bi-monthly		
Soil NO ₃ -N	Bi-monthly		
Soil NH ₄ -N	Bi-monthly		
Rainfall	Monthly		
Soil pH	Initial and final sampling		
Soil bulk density	Final sampling		
Soil total carbon and total nitrogen	Final sampling		
Leaf litter total carbon and total nitrogen	Final sampling		
Soil texture	Final sampling		
Soil colour	Final sampling		

Influence of land use changes on GHGs —• fluxes ---

Α.

Auxiliary physical and chemical soil measurements

Β.

Soil greenhouse gas (i)

(ii)

(ii) So (iii) So (iv) So (v) So (vi) So (vii) So (viii) So	il moisture content* il and air temperature il nitrate and ammonium il pH il bulk density il and leaf total carbon and total nitrogen il texture il colour infall
--	---

Soil nitrous oxide and methane fluxes Soil respiration (CO₂) fluxes

GHGs fluxes measurement

Portable infrared analyser

GHG chamber

Every 2 months for 2 years

- Soil N₂O, CH₄, CO₂ fluxes
- Soil NH₄, NO₃
- Soil moisture, pH, bulk density
- Soil and litter total carbon: total nitrogen
- Soil and air temperature
- Precipitation

Agilent 7694E Headspace sampler

Thermo 42C NO-NO₂-NO_x Analyzer

- Soil N₂O, CH₄, CO₂ fluxes
- Soil NH₄, NO₃
- Soil moisture, pH
- Soil total organic carbon

<u>Oil Palm (OP2), Oil</u> <u>Palm (OP7),</u> <u>Riparian (RR1)</u>

36 days

Logged Forest (FE), Fragmented Forest (FFE), Riparian (RR2)

22 days

GHG column

NITROUS OXIDE (N₂O)

Posterior probability density of the mean nitrous oxide flux from each land use, estimated by the Bayesian GLMM.

METHANE (CH₄) (Spatial & Temporal Variability)

RR

Greenhouse gas, soil respiration, and soil mineral nitrogen

Variable	land use	Ν	Mean	SD	Median
N₂O-N	Forest	286	13.87	171.49	13.90
(µg m ⁻² h ⁻¹)	OP	335	46.20	166.35	45.84
	RR	48	31.83	220.40	30.86
CH₄.C	Forest	216	2.20	48.34	-5.63
(µg m ⁻² h ⁻¹)	OP	251	-2.57	17.18	-3.00
	RR	36	1.27	12.60	-0.38
CO ₂ -C	Forest	288	137.39	94.63	115.35
(mg m ⁻² h ⁻¹)	OP	336	93.30	69.65	75.55
	RR	48	157.70	105.80	142.60
NH ₄ -N	Forest	288	3.92	5.41	2.85
mg g ⁻¹	OP	336	7.99	22.72	2.50
	RR	48	4.50	5.40	2.50
NO ₃ -N	Forest	288	5.30	5.28	3.40
mg g ⁻¹	OP	336	6.32	18.16	1.40
	RR	48	2.25	4.19	1.35

Greenhouse gas fluxes (N₂O-N, CH₄-C, soil respiration CO₂-C) and soil mineral nitrogen (NH₄-N and NO₃-N) averaged over the entire measurement period (Jan 2015 – Nov 2016) by land-use. N = number of individual data points, sd = standard deviation; forest = logged forest, OP = oil palm, RR = riparian reserve.

SOIL NITRATE AND SOIL AMMONIUM

iii. Soil nitrate and ammonium

SOIL pH AND SOIL BULK DENSITY

iv. Soil pH

v. Soil bulk density (soil compaction)

SOIL TOTAL CARBON AND SOIL TOTAL NITROGEN

LEAF LITTER TOTAL CARBON AND LEAF TOTAL NITROGEN

vii. Leaf litter total carbon and total nitrogen

Summary comparison of the different land uses CO₂-C flux N₂O-N flux CH₄-C flux CH₄-C flux (µg CH₄-C/m²/h) 3 N_2O-N flux (µg $N_2O-N/m^2/h$) **CO₂-C flux (mg CO₂-C/m²/h)** 0 2 2 10 10 2 0 0 175 -2 75 -7 --25 OPP FF RR OPP RR FF RR OPP FF Soil moisture content Soil temperature Mineral nitrogen in soil 28 25 40 Soil moisture content (%) Mineral nitrogen (µg/g) Temperature (°C) 27 20 30 26 15 25 20 10 24 10 5 23 22 0 0 FF RR OPP FF RR OPP FF RR OPP

Correlation between GHG fluxes and soil moisture content (SMC)

Soil moisture content range:

Forest,	3% to 48%
Oil palm,	2% to 45%
Riparian,	16% to 45%

NO and N₂O temporal variability

(Controlled Laboratory Incubations)

Summary comparison of the different land

uses (Controlled Laboratory Incubations)

CONCLUSIONS

GHGs Fluxes Variability:

- N₂O fluxes in Sabah from logged forest and OP on mineral soil were higher from oil palm plantation than logged forest
- CH₄ fluxes were relatively higher in logged forest than OP albeit with very high variability.
- CO2 fluxes were relatively higher in logged forest than OP albeit with high variability.

Influence of Physico-chemical Properties:

- Logged forest and oil palm soils have equally high potential for N₂O and NO emissions following an increase in soil moisture, while riparian reserve soil release constantly lower rates of N₂O and NO independently of soil moisture condition.
- The nitrogen based mineral fertilization induced the N₂O emission in soils, suggesting enhanced GHG emission potential after conversion of forest land for agriculture use.
- Microorganisms are key drivers for C-and N-cycling in soils, modulating the emissions of primary GHGs (CO_2 , $CH_4 \& N_2O$)

Drewer et al (2021) – Biogeosciences 18(5):1559-1575, DOI 10.5194/bg-1559-2021

SIGNIFICANT FINDINGS

- This 2-year field study of bi-monthly measurements demonstrated that N₂O fluxes from mineral soils in Sabah were relatively: highest from Oil Palm plantations, moderate from riparian area, and lowest from logged forests.
- Very large spatial and temporal variability of GHGs fluxes and soil chemical and physical properties were encountered at all sites. Mean CH₄ fluxes were low with very high variability and showed no clear trend, and the highest range of fluxes was measured in logged forests.
- Under controlled laboratory incubations: Logged forest and oil palm soils have equally high potential for N₂O and NO fluxes following an increase in soil moisture, while riparian reserve soil releases constantly lower rates of N₂O and NO independently of soil moisture condition.
- The nitrogen based mineral fertilization induced the N₂O emission in soils, suggesting enhanced GHG emission potential after conversion of forest land for agriculture use.

ACKNOWLEDGEMENT

This project was funded as LOMBOK (Land-use Options for Maintaining BiOdiversity and eKosystem functions) by the NERC Human Modified Tropical Forest (HMTF) research programme (NE/K016091/1).

NERC EXCLANT Land-use Options for Maintaining BiOdiversity & eKosystem functions

NERC

 (Natural
 Environment
 Research
 Council)

 SAFE (Stability of Altered Forest Ecosystems) staffs especially Laulina Mansul and Arnold James

 Our collaborators at CEH:
 Prof Dr Ute Skiba
 Dr Julia Drewer

 If you have any further questions, you may email me at
 Ieduning.mm
 @gmail.com

Drewer et al (2021). Front. For. Glob. Change, Sec. Forests and the Atmosphere https://doi.org/10.3389/ffgc.2021.738303

Methane is emitted or taken up by the soil depending on the balance between methanotrophy and methanogenesis. The latter is favored by anaerobic conditions and is the anaerobic microbial decomposition of organic material, which occurs in wet and organic rich soils; methanotrophy takes place in parts of the soil where oxygen is available (Dutaur and Verchot, 2007). For example, recent studies have suggested that CH_4 uptake in oil palm and rubber plantation in Indonesia might be higher in riparian forests than plantations (Hassler et al., 2015; Lang et al., 2020).

Methanotrophs are a subset of the methylotrophic bacteria which can use other one-carbon compounds, including methanol, methylated amines, halomethanes, and methylated compounds containing sulfur [1–7]. Methane monooxygenase (MMO), which catalyzes the oxidation of methane to methanol, is a defining feature of methanotrophs.

Centre for Ecology & Hydrology NATURAL ENVIRONMENT RESEARCH COUNCIL

