The last urban frontier: Assessing drivers of urbanization and tradeoffs among social and ecosystems services associated with LCLUC in Africa

Jody C. Vogeler^{1,2}, Shahriar Shah Heydari¹, Orion Cardenas-Ritzert², Melissa McHale³, Steven Filippelli¹, & Melinda Laituri²

Natural Resources Ecology Laboratory, Colorado State University, Fort Collins, CO
Dept. Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO
Dept. Forest Resources Management, University of British Columbia, Vancouver, British Columbia

Multi-tiered urban mapping for characterizing urbanization patterns, identifying hotspots of LCLUC, and informing UN Sustainable Development Goal Indicators in Africa

Jody C. Vogeler^{1,2}, Shahriar Shah Heydari¹, Orion Cardenas-Ritzert², Melissa McHale³, Steven Filippelli¹, & Melinda Laituri²

Natural Resources Ecology Laboratory, Colorado State University, Fort Collins, CO
Dept. Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO
Dept. Forest Resources Management, University of British Columbia, Vancouver, British Columbia

Background – Africa Urbanization Trends

23% of sub-Saharan Africa's urban population living in slums or informal settlements as of 2018

Mitigating implications of rapid unplanned

https://unstats.un.org/sdgs/report/2019/goal-11/

Background – Multi-Tier Urban Mapping

Characterizing urbanization/LCLUC patterns AND heterogenous urban landscapes!

Background – SDG Monitoring

GPS Traces User Diaries Convright Help A

About us V Methods & tools V Data News V Projects V Contact U

Open Spatial Demographic Data and Research

Crowd sourced

Opensource

Human

Sustainable Development Goal 11:

Make cities and human settlements inclusive, safe, resilient and sustainable.

Target 11.3: By 2030, enhance inclusive and sustainable urbanization and capacity for participatory, integrated and sustainable human settlement planning and management by all countries.

Indicator 11.3.1 – *Ratio of land consumption rate (LCR) to population growth rate (PGR).*

Formulas:

LCR = LN(Area of urban extent t1/Area of urban extent t2)Years between t1 and t2

PGR = <u>LN(Total population t1/Total population t2)</u> Years between t1 and t2

11.3.1 Ratio = <u>LCR</u> PGR

Target 11.7: By 2030, provide universal access to safe, inclusive and accessible, green and public spaces, in particular for women and children, older persons and persons with disabilities.

Indicator 11.7.1 – Average share of the built-up area of cities that is open space for public use for all, by sex, age, and persons with disabilities.

Formulas:

11.7.1 Ratio = (Public open space area + area of streets) Total area of urban agglomeration

Overarching goals:

 Create multi-tier spatial products to better characterize spatial heterogeneity of urban landscapes in three rapidly developing African countries

Overarching goals:

 Create multi-tier spatial products to better characterize spatial heterogeneity of urban landscapes in three rapidly developing African countries

<u>Tier 1:</u>

Country-level annual land use maps, moderate 30m resolution

<u>Overarching goals</u>:

• Create multi-tier spatial products to better characterize spatial heterogeneity of urban landscapes in three rapidly developing African countries

<u>Tier 1:</u>

Country-level annual land use maps, moderate 30m resolution <u>Tier 2:</u> Urban agglomeration annual land cover map, 10m resolution

<u>Overarching goals</u>:

 Create multi-tier spatial products to better characterize spatial heterogeneity of urban landscapes in three rapidly developing African countries

<u>Tier 1:</u>

Country-level annual land use maps, moderate 30m resolution

<u> Tier 2:</u>

Urban agglomeration annual land cover map, 10m resolution

<u> Tier 3:</u>

Temporal object-level and map refining, very high resolution

- Create multi-tier spatial products to better characterize spatial heterogeneity of urban landscapes in three rapidly developing African countries
- Identify hotspots of urbanization-driven LCLUC and better dissect within city functional land uses and change patterns

FIGURE 3.3: The urban clusters in the study area of Addis Ababa, Ethiopia in 1986, with open space within the study area differentiated into fringe open space (light green), captured open space (bright green), rural open space (dar green)

FIGURE 3.4: The urban extent (grey) of Addis Ababa, Ethiopia in 1986 and the ex-urban areas within its study area

Angel et al. 2016

Core Urban Cluster

Overarching goals:

- Create multi-tier spatial products to better characterize spatial heterogeneity of urban landscapes in three rapidly developing African countries
- Identify hotspots of urbanization-driven LCLUC and better dissect within city
- Contribute to the comprehension of SDG Indicator 11.3.1 (and others) and build on

methods to improve its role within large extent urbanization monitoring efforts.

30m resolution land use maps (2016-2020)

30m resolution land use maps (2016-2020)

Tool#3: TimeSync

Reference data generation

Tier-2 Land cover classes

Short vegetation Tall vegetation

Barren

Wetland Water

Land Cover (over pixel per year):

Impervious Building

Impervious Pavement

Tier-1 Land Cover / Land Use classes

Land Cover (over pixel per year):

- Barren
- Grass/herb
- Impervious
- Shrub
- Tree
- Water

Land Use (over pixel neighborhood per 3-year epoch):

- Agriculture
- Bare
- Developed
- Forest
- Rangeland
 - Grassland
 - Shrubland
 - Woodland
- Wetland
- Water

Country	LU Training	LU Validation	LC Training	LC Validation	
Ethipopia	926	550	2526	700	
South Africa	1285	1000	3182	1000	
Nigeria	695	700	TBD	TBD	

30m resolution land use maps (2016-2020)

Tool#1: Landsat/Sentinel time series

Reference data generation Tier-1 Land Cover / Land Use classes **Tier-2 Land cover classes** Land Cover (over pixel per year): Land Cover (over pixel per year): Barren Barren Grass/herb Impervious Legend Legend Shrub Bare Agriculture Tree Water Impervious - Building Barren **Impervious - Pavement** Developed Land Use (over p ear epoch): Short Vegetation Agriculture Forest Bare Tall Vegetation Rangeland Developed Water Forest Water Rangeland Wetland Wetland Grassland Shrublan Woodland Wetland Water

Country	LU Training	LU Validation	LC Training	LC Validation
Ethipopia	926	550	2526	700
South Africa	1285	1000	3182	1000
Nigeria	695	700	TBD	TBD

30m resolution land use maps (2016-2020)

Predictor Sets Landsat 8 Sentinel 1

VIIRS Nightlight Topography Bioclimatic

30m resolution land use maps (2016-2020)

- Random Forest Classifier
- Extracted features (total of 113):
 - Min/mean/max of Landsat/Sentinel1/Sentinel2 bands and derived spectral indices over year
 - Zonal statistics for median of yearly data
 - 8 GLCM Texture metrics with 2 or 4 window sizes
- Features finalized through iterative process after clustering on their correlation

accuracy

Legend

Finalize model by visual inspection of generated maps

Pick the best X models

30m resolution land use maps (2016-2020)

					Legend Agriculture Barren Developed Forest Rangeland Water Wetland
South Africa,	Nigeria,		Ethiopia,		Predictor Sets
2019	2019		2019		Landsat 8
Map accuracy assessment for	or Ethiopia mode	l (other cou	ntries		VIIRS Nightlight
(Olofsson, 2014 method)					Topography
Weighted proportions	Producer Accuracy	95% conf. int.	User Accuracy	95% conf. int.	Bioclimatic
Agriculture	73.4%	10.2%	64.6%	10.6%	
Bare	75.7%	3.8%	72.5%	10.6%	
Developed	10.0%	1.5%	68.9%	11.7%	
Forest	61.3%	5.1%	75.4%	10.9%	
Range	82.0%	19.4%	75.0%	7.3%	
Water	100.0%	0.0%	98.3%	3.4%	
Wetland	14.3%	14.3%	45.9%	10.7%	
Overall accuracy:	72.1%	95% conf. int.:	5.1%		

FIGURE 3.3:

The urban clusters in the study area of Addis Ababa, Ethiopia in 1986, with open space within the study area differentiated into fringe open space (light green), captured open space (bright green), rural open space (dark green).

ons & ge Figure 7: High density, cells, urban centre and city of Graz, Austria

30m resolution

land use maps

(2016-2020)

Urban

Delineations &

Change

Djikstra et al. 2018

30m resolution land use maps (2016-2020) Urban Delineations & Change

30m resolution land use maps (2016-2020) Urban Delineations & Change

30m resolution land use maps (2016-2020) Urban Delineations & Change

30m resolution land use maps (2016-2020) Urban Delineations & Change

Land Consumption Rate = 0.15 Pop Growth Rate = 0.024 SDG 11.3.1 Ratio = 6.3

30m resolution land use maps (2016-2020) Urban Delineations & Change Identify Hotspots of Urbanization

30m resolution land use maps (2016-2020)

Urban Delineations & Change Identify Hotspots of Urbanization

30m resolution land use maps (2016-2020) Urban Delineations & Change

Identify Hotspots of Urbanization

30m resolution land use maps (2016-2020)

Urban Delineations & Change dentify Hotspots

Identify Hotspots of Urbanization

30m resolution land use maps (2016-2020) Urban Delineations & Change Identify Hotspots of Urbanization

30m resolution land use maps (2016-2020) Urban Delineations & Change Identify Hotspots of Urbanization

• Examined metrics by population size classes to identify urban agglomerations with the highest SDG 11.3.1 values in each class

30m resolution land use maps (2016-2020)

Urban Delineations & Change Identify Hotspots of Urbanization

- Examined metrics by population size classes to identify urban agglomerations with the highest SDG 11.3.1 values in each class
- Evaluated different patterns between size classes as well as across the different countries

30m resolution land use maps (2016-2020)

Urban Delineations & Change Identify Hotspots of Urbanization

- Examined metrics by population size classes to identify urban agglomerations with the highest SDG 11.3.1 values in each class
- Evaluated different patterns between size classes as well as across the different countries
- Investigated impacts of spatial resolution on urbanization metrics when using our approach.
 - overall increase in the mean 11.3.1 value for small cities when using coarser resolution land use data
 - decrease in the mean values for larger cities when using coarser resolution land use data

30m resolution land use maps (2016-2020) Urban Delineations &

Change Identify Hotspots of Urbanization • Pair our findings with ground data to aid in the allocation of planning and development efforts

Name	LCRPGR	LCR	PGR
Bahir Dar	7.33	0.197	0.027
	3.63	0.196	0.054
Adama	3.46	0.161	0.047
🗕 Jijiga	3.07	0.113	0.037
Debre Markos	2.86	0.199	0.070
Debre Berhan	2.62	0.141	0.054
Hawassa	2.32	0.099	0.043
Jimma	2.24	0.127	0.057
Dilla	2.12	0.152	0.072

LCRPGR is the ratio of Land Consumption Rate to Population Growth Rate, LCR is Land Consumption Rate , PGR is Population Growth Rate, and DA is Developed Area

30m resolution land use maps (2016-2020) Urban Delineations & Change Identify Hotspots of Urbanization

10m resolution land cover maps within all cities

<u>Predictor Sets</u> Sentinel-2 Sentinel 1 Topography Bioclimatic

Legend

Bare

Water

Wetland

Impervious - Building

Impervious - Pavement

Short Vegetation

Tall Vegetation

30m resolution land use maps (2016-2020)

Urban Delineations & Change Identify Hotspots of Urbanization

10m resolution land cover maps within all cities Bahir Dar, Ethiopia (65.7 km²)

	precision	recall	F1-score
Barren	0.712	0.7	0.706
Impervious_building	0.76	0.736	0.748
Impervious_Pavement	0.531	0.573	0.551
Short vegetation	0.89	0.906	0.898
Tall vegetation	0.905	0.884	0.894
Water	0.4	1	0.571
Wetland	0.789	0.577	0.667
Macro average	0.713	0.768	0.719
Accuracy	0.775		

Chiro (8.5 km²)

<u>Predictor Sets</u> Sentinel-2 Sentinel 1 Topography Bioclimatic

30m resolution land use maps (2016-2020) Urban Delineations & Change Identify Hotspots of Urbanization

10m resolution land cover maps within all cities

High-resolution urban object classifications

Mekelle, Ethiopia 2020 (OBIA using Maxar Imagery)

30m resolution land use maps (2016-2020) Urban Delineations & Change Identify Hotspots of Urbanization

land cover maps within all cities

High-resolution urban object classifications

30m resolution land use maps (2016-2020) Urban Delineations & Change Identify Hotspots of Urbanization

10m resolution land cover maps within all cities

High-resolution urban object classifications

30m resolution land use maps (2016-2020) Urban Delineations & Change Identify Hotspots of Urbanization

10m resolution land cover maps within all cities

High-resolution urban object classifications

30m resolution land use maps (2016-2020) Urban **Delineations** & Change **Identify Hotspots** of Urbanization 10m resolution land cover maps within all cities High-resolution urban object classifications

Summary

30m resolution land use maps (2016-2020)Urban **Delineations** & Change **Identify Hotspots** of Urbanization 10m resolution land cover maps within all cities High-resolution urban object classifications

Summary

 Multi-tier spatial products for better characterizing spatial heterogeneity of urban landscapes in three rapidly developing African countries

30m resolution land use maps (2016-2020)Urban **Delineations** & Change **Identify Hotspots** of Urbanization 10m resolution land cover maps within all cities High-resolution urban object

classifications

Summary

- Multi-tier spatial products for better characterizing spatial heterogeneity of urban landscapes in three rapidly developing African countries
- Identified hotspots of urbanization-driven LCLUC and better dissected within city functional land uses and change patterns

30m resolution land use maps (2016-2020)Urban **Delineations** & Change **Identify Hotspots** of Urbanization 10m resolution land cover maps within all cities High-resolution urban object

classifications

Summary

- Multi-tier spatial products for better characterizing spatial heterogeneity of urban landscapes in three rapidly developing African countries
- Identified hotspots of urbanization-driven LCLUC and better dissected within city functional land uses and change patterns
- Contributed to the comprehension of SDG Indicator 11.3.1 (and others) and built on methods to improve its role within large extent urbanization monitoring efforts

Thank You Project Team!

QUESTIONS?

jody.vogeler@colostate.edu

Jody C. Vogeler^{1,2}, Shahriar Shah Heydari¹, Orion Cardenas-Ritzert², Melissa McHale³, Steven Filippelli¹, & Melinda Laituri²

Natural Resources Ecology Laboratory, Colorado State University, Fort Collins, CO
Dept. Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO
Dept. Forest Resources Management, University of British Columbia, Vancouver, British Columbia