Chemical characteristics, source apportionment, and health risk assessment of heavy metals in PM_{2.5} in Bien Hoa city, southern Vietnam

Hoang Anh Le^{1,*}, Bui Duy Linh^{1,2}, Ngo Quang Khoi³

¹Faculty of Environmental Sciences, University of Science, Vietnam National University 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam

²Department of Chemistry and Environment, Vietnam-Russian Tropical Centre 63 Nguyen Van Huyen, Nghia Do, Cau Giay, Hanoi

³School of Water, Energy and Environment, Cranfield University, College Road, Cranfield, Bedfordshire, MK43 0AL, UK

Content

1. Introduction

2. Material and method

3. Result and Discussion

4. Conclution

1. Introduction

- Air pollution is one of the greatest scourges on in our era and its adverse impacts have posted a major concern to the environment and human health.
- \square PM_{2.5} can adsorb toxic materials (Fe, Cu, Mn, Cr, etc.) that damage human organs.
- □ Number of studies regarding to air pollution focus on the most populous cities (e.g. Hanoi and Ho Chi Minh city).
- **Bien Hoa city (BHC)** is among the most populous cities nationwide, and a hotspot of major industrial establishments. Emission from BHC can disperse to the surrounding areas, and make contact with a much larger population.

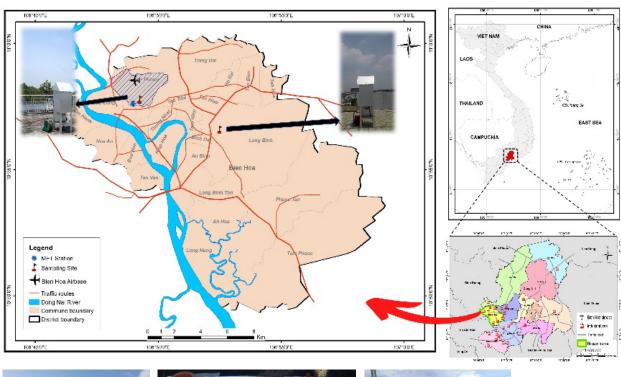
2. Materials and methods

Sampling and chemical analysis

Enrichment factor (EF)

Backward trajectories and concentration weighted trajectory

Health risk assessment of soluble trace metals inhalation


Sampling and chemical analysis

Sampling sites:

- Bien Hoa Airbase (urban zone).
- Long Binh district (industrial zone).

40 samples were collected:

- Rainy season vs. Dry season.
- High volume air sampler (E-1000DBLX).
- Quartz filter (102 mm).
- Intake of 200 L/min.
- \circ h = 12 m above the ground.

Enrichment factor (EF)

$$EF = \frac{\left(\left(\frac{C_i}{C_{ref}}\right)Sample}{\left(\left(\frac{C_i}{C_{ref}}\right)Crust\right)}$$

Where:

C_i: concentration of heavy metal i;

C_{ref}: concentration of reference metalic element;

 $(C_i/C_{ref})_{sample}$: ratio within the sample

 $(C_i/C_{ref})_{crust}$: ratio at the Earth's crust.

Backward trajectories and concentration weighted trajectory

Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT):

- Conducted via the SplitR package in R. 72-hour backward trajectory arrivals were calculated every 3 hours at an arrival height of 500 m.
- Concentration weighted trajectory (CWT) analysis was used to address potential sources of individual trace element.

Health risk assessment of soluble trace metals inhalation

$$EC_i = \frac{CA_i \times ET \times ED}{AT}$$

$$HQ_i = rac{EC_i}{RfC_i \times 1000}$$
 $R_i = EC_i \times IUR_i$ $TCR = \sum R_i$

Where:

EC_i: exposure concentration of the heavy metal i (μ g/m³),

 CA_i : concentration of the heavy metal i in air media ($\mu g/m^3$),

ET: exposure time (estimate 8 h/day),

ED: exposure duration (40 years for adults * 365 days/year),

AT: averaging time (75 year lifetime x 365 days/year x 24 h/day) (75 years the average life expectancy of the

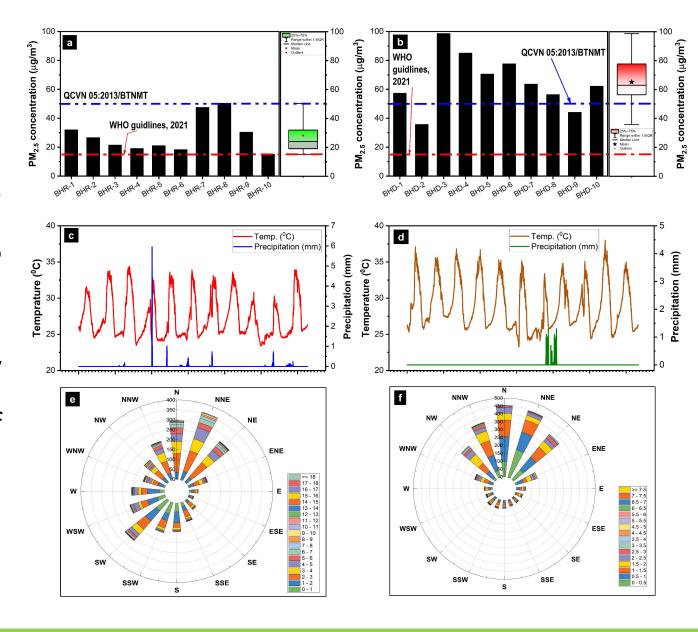
Vietnam population in 2018

RfC_i: reference concentration for the element i - inhalation toxicity value (mg/m³)

HQ_i: hazard quotient of element i (unitless)

 IUR_i : inhalation unit risk of the carcinogenic element i (µg/m³)

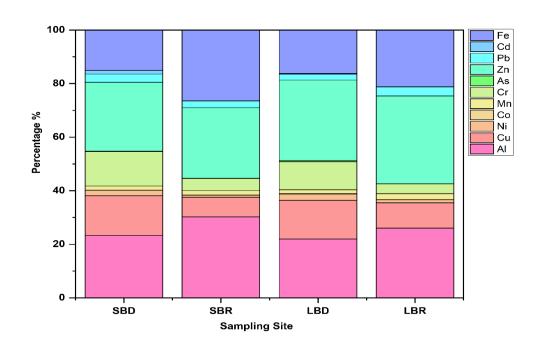
R_i: carcinogenic risk of the element i (unitless)

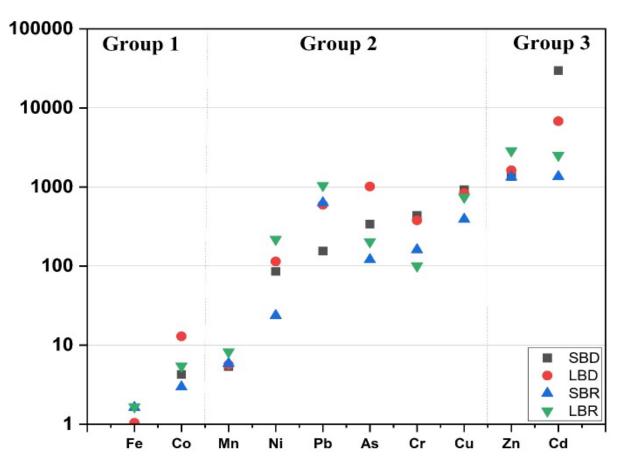


3. Results and Discussion

Air mass origins

- $ightharpoonup PM_{2.5}$ conc. level (both sites/seasons) exceed the WHO guideline value (15 $\mu g/m^3$).
- ightharpoonup Only PM_{2.5} conc. level in the dry season exceed the threshold of QCVN05:2013/BTNMT (50 μ g/m³).

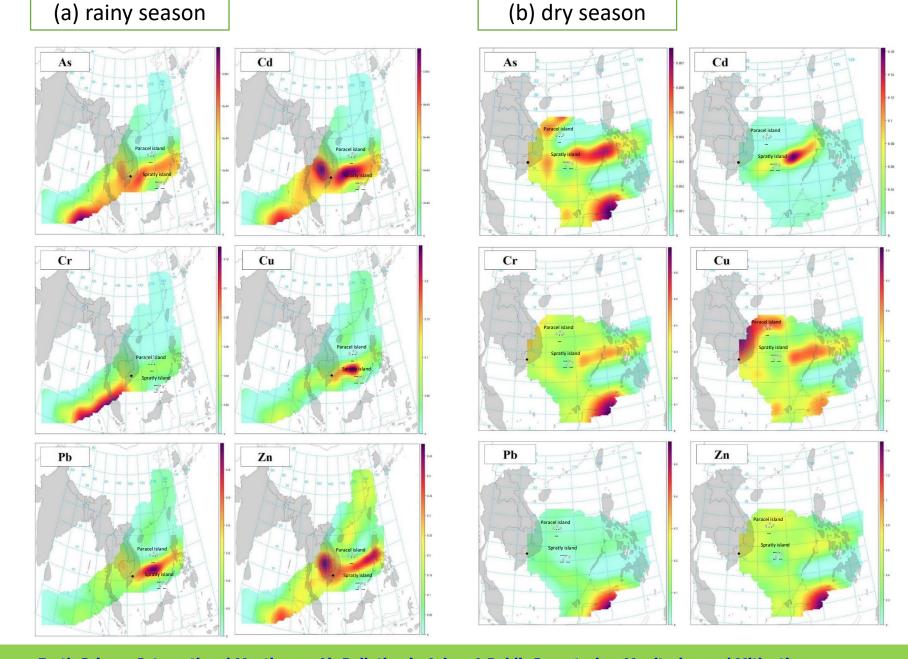




Heavy metals levels in PM_{2.5}

- > High (4% 35%): Fe, Zn, Cu, Al, and Cr.
- ➤ Moderate (1% 3%): Ni, Mn, and Pb.
- > Low (< 1%): As, Co, and Cd.

Enrichment factor



HYSPLIT model

Main sources:

- transportation,
- industry,
- dioxin treatment activities ?.

Health risk exposure of PM_{2.5} soluble metals

- ➤ Health risk assessment focuses on the six classified carcinogenic agents (As, Cd, Cr, Pb, Co, and Ni).
- ightharpoonup HI values remain under 1 for all samples, except for SBD ightharpoonup low risks of resulting in chronic adverse health impacts.
- ➤ TCR values all greatly exceed the recommended threshold at 10^{-6} , ranging between $10^{-4} \le$ TCR $\le 10^{-3}$

Location	SB		LB	
Sample	SBD	SBR	LBD	LBR
н	1.384 ± 1.976	0.182 ± 0.058	0.962 ± 0.638	0.150 ± 0.062
TCR	7.2E-04 ± 3.1E - 04	1.5E-04 ± 7.1E-05	7.9E-04 ± 5.6E-04	1.0E-04 ± 6.6E-05

4. Conclusion

- The concentration and potential emission source of eleven heavy metals in $PM_{2.5}$ in BHC are studied (As, Pb, Mn, Fe, Cd, Cr, Zn, Co, Al, Cu, and Ni) + 8 ions.
- ☐ Three groups: **high concentration** at over 4% (Fe, Zn, Cu, Al, Cr), **moderate** 1% 3% (Ni, Mn, Pb), and **low** <1% (As, Co, Cd).
- ☐ EF of Pb, As, Cr, Cu, Zn and Cd at above 100.
- **As for the potenial cancer risk**, samples at both locations and seasons yeild TCR values ranging between $10^{-4} \le TCR \le 10^{-3}$
- Results of HYSPLIT model suggest that there are emission contribution originated from other countries within the Southeast Asia region.

Thank you!

Assoc. Prof. Dr. HOANG ANH LE

Head of Department of Environmental Management Faculty of Environmental Sciences (FES) University of Science (VNU-HUS) Vietnam National University (VNU) 334 Nguyen Trai Str., Thanh Xuan Dist., Hanoi, Vietnam H.P: (+84) 913570406

Email: <u>leha@hus.edu.vn</u> leha@vnu.edu.vn

Hoang Anh Le VNU University of Science, Vietnam

Bui Duy Linh Vietnam-Russia Tropical Centre

Nghiem Xuan Truong Vietnam-Russia Tropical Centre

Environmental Science and Pollution Research

Research Article | Published: 23 December 2022

Physico-chemical properties and transboundary transport of $PM_{2.5}$ in Bien Hoa City, Dong Nai Province, Southeastern Vietnam

Bui Duy Linh, Hoang Anh Le

⊗ Nghiem Xuan Truong

Environmental Science and Pollution Research (2022) Cite this article

