Pixel-based evaluation of rice production and related greenhouse gas emissions in the Mekong delta via a digitaltwin system with a simultaneous data assimilation scheme of SAR data and ground observations

Hironori Arai¹⁾, Thuy Le Toan¹⁾, Mehrez Zribi¹⁾, Wataru Takeuchi²⁾, Kei Oyoshi³⁾, Lam Dao Nguyen⁴⁾, Tamon Fumoto⁵⁾, Shinich Sobue³⁾

Counter measure: Intermittent irrigation The necessity of quantifying GHG mitigation effect and rice productivity

Source: CEA analysis based on: Alexandratos and Bruinsma, 2012 Jhanvi Saini and Rajan Bhatt Current Journal of Applied Science and Technology · April 2020

AWD has been carried out based on research works in last decades

Multi-year study conducted on a farmer's fields in the Mekong Delta

AWD reduces methane emission, water demand, with slightly improved grain yield and quality (2012-2016 experiment)

Rice phenology and satellite data pixel based simulation of CH₄ emission

Arai et al., Springer, 2022

C-band Sentinel-1 rice monitoring -inundation detectable at early rice growing stages-

L-band PALSAR-2 rice monitoring -inundation detectable in the whole stages-

69 days after sowing, 6th May 2016

σ⁰ based inundation detection with ALOS2-HR data

GNSS signals available for inundation detection

Here we can see the dense coverage of the two oldest GNSS constellations: the American GPS (orange) and the Soviet system GLONASS (green).

Kalman filter product (500m_res, 15-days resolution)

No more ad hoc parameter setting! Everything adaptive!! We can use all specular signals ! Spatio-temporal pattern clearly appears!

Arai et al., Remote sensing, under review

SAR data assimilation of field water level simulation -binding cyber space and real space-

Arai et al., RSE 2022

How deep the field water was dropped by next irrigation? - Estimation by DA model parameter estimation -

A sample of validation result with ground observation data -semi dyke system-

A sample of validation result with ground observation data -full dyke system-

Ground-observed field waterlevel

Continuously inundated paddy

Paddy with intermittent drainage

Mean values of simulated field waterlevel

 $(4 \times 4 \text{ pixel windows around the ground observation point})$

— Continuously inundated paddy

— Paddy with intermittent drainage

The temporally local minimum waterlevel Continuously inundated paddy

A Paddy with intermittent drainage

Mean values of estimated $D_{before irrigation}$ (4 × 4 pixel windows around the ground observation point)

Continuously inundated paddy Paddy with intermittent drainage

Arai et al., RSE 2022

Economic assessment of GHG mitigation measures under large uncertainties

Clear cost/benefits and actual farmers' participation are the keys to the adoption of new technologies by farmers.

Transparent MRV system on baselines/mitigation-effects with EO data should be enhanced.

Adaptation for Drought and saline intrusion

Drought

Irrigation status / soil moisture - SAR/GNSS-R (QZSS) Land surface temperature - Advanced Himawari Imager

Effect of 2 C warming on potential rice yield in Asia

Saline intrusion

3D salt intrusion simulation coupling with crop/soil model

- bathymetry data around river mouth
- vertical profile of salt concentration in river
- <u>discharge</u>

