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Introduction
 Global trend of urban growth

 Population growth

 Rural-to-urban migration
(Grimm et al., 2008)

 Impacts and significance

 Biodiversity and ecosystems processes (Tian et al., 2004)

 Pollution (Jerrett et al., 2005)

 Urban heat island effect (Imhoff et al., 2010)

 Green space access (Lovasi et al., 2008; Flocks et al., 2011)

 Utility of remote sensing (Jensen and Cowen, 1999; Yang, 2002)



Introduction
 NASA Land-Cover/Land-Use Change (LCLUC)

 Emerged to document change
(Gutman et al., 2004; Justice et al., 2015)

 Reliance on optical, 2D satellite-based measurements
(Yang, 2002; Gutman et al., 2004; LCLUC, 2016)

 Need for comprehensive assessment

 Three-dimensionality overlooked (Singh et al., 2012)

 Most urban studies focus on 2D building footprint extraction

(Cheuk and Yuan, 2009; Yu et al., 2010)

 Need to observe growth and decline

 Remote population estimation

(Frazier et al., 2013; Frazier and Bagchi-Sen, 2015)



Introduction
 Light detection and ranging (lidar) provides an ideal 

means by which to accurately examine urban build-
up, but…

 Lidar is expensive, repeat acquisitions not common

 So, alternatives are needed 

 Radar offers the best option albeit usually with 
coarser spatial resolution



QuikSCAT for urban analyses
 Dense Sampling Method (Nghiem et al., 2009)

 Developed and patented by California Institute of Technology/JPL

 SeaWinds scatterometer data

 10 year lifespan  ~10 TB of data

 25 x 37 km footprint

 Temporal resolution reduced to yearly scale

 1 km spatial resolution

 Tested on Príncipe Island

 Area, shape accurately represented

urban.jpl.nasa.gov



QuikSCAT for urban analyses

 Dense Sampling Method (Nghiem et al., 2009)

 Dallas-Fort Worth  high backscatter from largest structures

 Correlative with population density, urban extent, areas of change, 
other urban variables

(Nghiem et al., 2014; Jacobson et al., 2015)

 Cannot estimate volume without calibration

 Applicability of airborne lidar (Butkiewicz et al., 2008)



Objective

 Validate the use of spaceborne radar data for 
deriving urban building volume (as validated 
with airborne lidar data)
 QuikSCAT Ku-band scatterometer

 Sentinel-1 C-band SAR

 Significance
 Urban (and other) remote sensing analyses 

often limited to two-dimensions

 Vertical component critical to comprehensive 
study of urban areas



Data and Methods

Radar scatterometer data
 SeaWinds scatterometer on QuikSCAT satellite (2000-2009)

 Processed using Dense Sampling Method (DSM)

 Increase spatial resolution by aggregating year of data

 1km spatial resolution (backscatter units of dB)



Data and Methods

Lidar data
 Provided by U.S. Army Geospatial Center

 Lidar-derived last-return DHMs (1m)

 DHM = Surface – Terrain [relative heights]

 Building footprints, aggregate to 1km

 Analysis extents determined by lidar

Austin, TX                                 Washington, DC 

City Year Analysis 
extent (km2)

Population 
(2010)

Atlanta, GA 2003 79 420,003

Austin, TX 2006 390 720,390

Buffalo, NY 2004 342 261,310

Detroit, MI 2004 347 713,777

Los Angeles, CA 2007 64 3,792,621

New Orleans, LA 2008 346 343,829

San Antonio, TX 2003 640 1,327,407

Tulsa, OK 2008 1,329 391,906

Washington, DC 2008 8,297 601,723

Table A. Study cities 
and lidar data coverage.



Data and Methods

Analytical comparisons
 Direct comparison problematic due to data types

 Gradient of built-up volume more appropriate

 Transformation to comparable second-order polynomial 
regression format (i.e. spatial trend)

 Correlative statistical analyses (r2, r, 𝜌𝜌, and 𝜏𝜏)

 Raw DSM radar vs. raw lidar

 Trended DSM radar vs. trended lidar

 Raw DSM radar vs. trended lidar

Same approach taken with Sentinel-1 SAR C-band data 
(using DSM method to increase spatial resolution to 40m) 



Results

 Spatial distributions of are similar

 Spatial trend required

 Correlations weak between raw radar and lidar

 e.g., r2 = 0.20 for San Antonio

 Strongest correlations between trended radar and 
trended lidar

 e.g., r2 = 0.97 for San Antonio

 Strong correlations between raw radar and trended lidar

 e.g., r2 = 0.75 for San Antonio 



Austin, TX Washington, DC



San Antonio, TX Tulsa, OK



City r2 r 𝛒𝛒 𝛕𝛕

Atlanta, GA 0.13 0.36 0.54 0.38

Austin, TX 0.21 0.45 0.64 0.50

Buffalo, NY 0.14 0.38 0.51 0.35

Detroit, MI 0.10 0.32 0.43 0.30

Los Angeles, CA 0.04* 0.20* 0.44 0.30

New Orleans, LA 0.04 0.19 0.20 0.13

San Antonio, TX 0.20 0.45 0.57 0.40

Tulsa, OK 0.26 0.51 0.59 0.40

Washington, DC 0.32 0.56 0.67 0.48

Table B. Correlations 
between raw DSM radar 
data and raw lidar data.

r2: coefficient of determination in linear model; 
r: Pearson correlation coefficient; 
ρ: Spearman rank correlation coefficient; 
τ: Kendall rank correlation coefficient. 
All correlations significant with p-values < 0.01 unless otherwise noted (< 0.05*).

Table C. Correlations between 
trended DSM radar data and 
trended lidar data.

Table D. Correlations between 
raw DSM radar data and 
trended lidar data.

City r2 r 𝛒𝛒 𝛕𝛕

Atlanta, GA 0.77 0.88 0.90 0.73

Austin, TX 0.98 0.99 0.99 0.91

Buffalo, NY 0.69 0.83 0.86 0.67

Detroit, MI 0.81 0.90 0.93 0.78

Los Angeles, CA 0.64 0.80 0.73 0.55

New Orleans, LA 0.33 0.57 0.61 0.44

San Antonio, TX 0.97 0.98 0.97 0.87

Tulsa, OK 0.84 0.92 0.93 0.77

Washington, DC 0.98 0.99 0.99 0.91

City r2 r 𝛒𝛒 𝛕𝛕

Atlanta, GA 0.33 0.57 0.58 0.42

Austin, TX 0.72 0.85 0.86 0.67

Buffalo, NY 0.38 0.61 0.64 0.45

Detroit, MI 0.52 0.72 0.74 0.54

Los Angeles, CA 0.26 0.51 0.50 0.35

New Orleans, LA 0.21 0.46 0.47 0.32

San Antonio, TX 0.75 0.87 0.83 0.64

Tulsa, OK 0.63 0.80 0.82 0.61

Washington, DC 0.66 0.81 0.86 0.66



Results
 Sentinel-1 C-band SAR

 Focused on the greater Detroit area for a single year

 Direct comparisons not possible due to scale mismatch

 HH (horizontal transmit and horizontal receive) and HV 
(horizontal transmit and vertical receive) analyzed

 Analysis conducted at multiple aggregated spatial resolutions: 
40m, 80m, 120m, 160m, 1km

Analysis Extent

City of Detroit 
Boundary
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Radar trend vs. lidar trend scatterplots
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Interactive map

https://gis-core.maps.arcgis.com/apps/instant/3dviewer/index.html?appid=db51b68a0d2a4bf29f53b30bfc026636


Discussion

 LCLUC analyses require 3D data to comprehensively 
evaluate urban dynamics

 Radar as substitute to difficult to obtain lidar data

 Other: ICESat-2, GEDI—still lack historic data

 Linear relationship significance

 Equally able to estimate areas with low and high built-up 
volume

 Spatial trend approach limitation

 Second-order methodology may not work for cities with 
multiple urban cores

 Temporal and spatial resolution differences (lidar vs. radar)

 Future work

 Further testing needed on additional cities (i.e. non-U.S. 
urban areas, smaller footprint cities for sensitivity analysis), 
other radar data (TanDEM-X, COSMO-SkyMed), higher spatial 
resolution



Conclusions

 Analysis of many U.S. cities with differing 
urban characteristics showed that: 

 Both DSM-processed scatterometer data and C-
band SAR data effectively spatially correlate 
with airborne lidar data 

 DSM results showed higher correlation values but 
were coarser in spatial resolution

 Strong linear correlations indicate that DSM 
method is accurate for estimating urban volume 

 Provides generalized alternative to lidar with 
higher temporal frequency and greater areal 
coverage
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Questions?

Thanks for your time!
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